Discrete Optimization

Instructor: Yuan Zhou
Notes Taker: Zejin Lin
TSINGHUA UNIVERSITY.
linzj23@mails.tsinghua.edu.cn

l1zjmaths.github.io

June 11, 2025

Contents

1 Introduction
1.1 Models of Computation: Turing Machines
1.2 Models of Computation: word RAM
1.3 Polynomial Running Time
1.4 Notation
1.5 TentativeSyllabus

2 Greedy Algorithms
2.1 Interval Scheduling
2.2 Interval Partitioning
2.3 Single-Source ShortestPath

24 Minimum Spanning Tree

SN G1 U1 O B~

X N o o

lzjmaths.github.io

2.5 Minimum Arborescence

3 Dynamic Programming

3.1 Weighted Interval Scheduling
3.2 Segmented LeastSquare
3.3 KnapsackProblem
3.4 RNA Secondary Structure
3.5 Sequence Alignment(Edit Distance)
3.6 Matrix Multiplication 0000

4 Flow Network
4.1 Definition

42 Appllication

5 Introduction to Approximation Algorithm

51 Set-Cover.
5.2 Weighted Min Set-cover and Randomized Rounding
5.3 Hardness of Approximation
54 Label-CoverGames
55 Multicut
56 3-Coloring
57 SparsestCut
5.8 Hardness of Approximating MAXE3LIN
59 Hardnessof Max-Cut
510 Investigationon ULC
Index

Important Theorems

15
15
16
16
19
19
21

21
21
27

34
36
38

52
58
69
71
79
85
91

92

93

Important Examples

94

1 Introduction

Discrete (combinatorial) optimization is a subfield of mathematical optimiza-
tion that consists of finding an optimal object from a finite set of objects, where
the set of feasible solution is discrete or can be reduced to a discrete set.

However, usually this feasible solution set is very large (due to combinatorial
explosion) and it is computationally infeasible to go through all feasible solutions

and find the one with opimal objective function value.

Example 1.1 (Task Assignment). There are n tasks and n workers. Each task has
an importance score a; and each worker has a skill level b;. We need to assign each

n
task to a worker such that the sum of Z a;by(;) is maximized.
=1

1.1 Models of Computation: Turing Machines

Definition 1.2 (A Deterministic Turing Machine(DTM)). It consists of an
infinitely-long tape (memory) and a deterministic finite automata that controls

the head to move along the tape and read /write symbols from/to the tape cells.

Definition 1.3 (Complexity measure). Running time is the number of steps of
Turing machine.

Memory is the number of tape cells used.
Definition 1.4 (Caveat). No random access of memory
e Single-tape DTM requires > n? steps to detect n bit palindromes.

* EAsy to detect palindromes within ¢, steps on a real computer.

1.2 Models of Computation: word RAM

Definition 1.5. Each memory location and input/output cell stores a w-bit integer
(assume w = log, w).

Primitive Operations:

1.3 Polynomial Running Time

Definition 1.6. We say that an algorithm is efficient if its running time is polyno-

mial of input size n.

Example 1.7 (Task machine). Polynomial-time algorithm: selection sort/inserting
sort/quick sort/merge sort.
Non-polynomial-time algorithm: try all possible matching and output the one

with the highest score.

* Definition is relatively insensitive to model of computation.

* The poly-times algorithm that people develop have both small constants

and small exponents

¢ Breaking through the exponential barrier is a major challenge.

1.4 Notation

Definition 1.8. f(n) is O(g(n)) if there exist constants ¢ > 0 and ny > 1 such that

0< f(n) <c-g(n)forall n = ny.

f(n)is Qg(n)) is g(n) € O(f(n)).
f(n)is ©(g(n)) is both f(n) € O(g(n)) and g(n) € O(f(n)).

1.5 Tentative Syllabus

We will introduce three exact discrete optimization algorithms(6 weeks):
* Greedy algorithms

¢ Dynamic programming

e Network flows

And some approximation algorithms for intractable discrete optimization prob-

lems(9 weeks)
* Definition of approximation algorithms

— Algorithm techniques: greedy, linear programming relaxation,

semidefinite programming relaxation.
* Hardness of approximation

— Techniques: hardness reductions, Fourier analysis of Boolean func-

tions.

* Problems studied: Set-Cover, facility location, K-center, Multi-Cut, Max-

Cutl e

2 Greedy Algorithms

2.1 Interval Scheduling

Example 2.1 (Interval Scheduling). Input: n jobs, {(s;, fi)}i~,. Goal: How to
choose jobs with maximized number such that each pair of intervals do not in-

tersect.

Greedy Framework Consider jobs in order 7(1),n(2),--- ,m(n). For each (i),
i=1,2,---,n,if 7(i) compatible with all selected jobs, then select 7 (7).
The choice of 7: Earliest-start-time-first, Earliest-finish-time-first, Longest-job-

tirst, Shortest-job-first, etc.
Theorem 2.2. Earliest-finish-time-first greedy returns an optimal solution.

Proof. Suppose algorithm selects i1, is, - - - , ik, Opt selects k' > k jobs.

Choose an optimal solution agrees with algorithm in first r jobs so that »
maxmized, ji, j2, - -, Ji-

Obviously, r < k. Then f; ,, < fj.,,. Therefore, we can replace ¢, with j,; to

get another optimal solution, which contradicts to the fact that » maxmized. [

2.2 Interval Partitioning

Example 2.3 (Interval Partitioning). Input: n lectures, {(s;, fi)}7_;.
Goal: Position lectures into minimum number of classrooms so that in each

classroom lectures are compatible.

Greedy Framework Lectures in order 7(1),---,m(n), the number of opening
classrooms is zero in the beginning. For each (7),

If 3 opening classroom j s.t. lecture 7(i) compatible with lectures in j, then
7(i) — classroom j.

Else, open a new classroom for (7).

Proof. Introduce a concept Depth: d(t) = Number of lectures active at time ¢, and

d= III?X{d(t)}.
Claim 2.2.1. OPT > d.

Lemma 2.4. Alg <d

Proof. Assume for contradiction.

At some point, Alg opens d + 1 classroom.

Denote the lecture being considered by . Then it is not compatible with other
d lectures. Hence, there should be a time when d + 1 lectures are active, which

causes contradiction. O

]

2.3 Single-Source Shortest Path

Example 2.5 (Single-Source Shortest Path(SSSP)). Input: Graph G = (V, E,w), V
is the set of point and F is the set of edge with direction and w : ' — Ry,.

We want to find a path from s to ¢ with minimum total cost.

Dijkstra’s Algorithm Choose s as a source. dls] = 0,du] =

w(s,u) if (s,u) e ¥
, S = {s} first. To record the path, we can use Pred|u] < s.

400 otherwise

Algorithm 1 Dijkstra’s Algorithm

1: while S # V do
2: Choose u € arg rggn{d[x]}.

3: Update S — S u {u}.

4: foreachz eV — S,(u,z) e E'do

5: d[z] < min{d[z], d[u] + w(u, z)}.
6: if dlu] + w(u,z) < d[z] then

7: dlz] <« d[u] + w(u,x)

8: Pred|[z] < u

9: end if
10: end for

11: end while

Theorem 2.6 (Invariant). Yu € S, d[u] is the shortest path distance s ~ u

Proof. Induction on |S].

For |S| = 1 true.

Induction Step: Every time executing 2 in Algorithm 1, we need to prove d|u]
is the shortest distance s ~» .

If v = Pred[u] € S, then d[u] = d[v] + w(v,u).

For any path from s to u, there exists («, 5) € E'such thata € S, 8 ¢ S. Then

length(P) > length(P[s — f3])
= length(P[s — a]) + w(a, 5)

> dla] + w(a, f)

]

Remark 2.7. The straightforward implementation of Dijkstra’s Algorithm is of
O(o]?).

If we use priority queue: () with priority Q.7 (). It has some methods:
¢ ExtractMin: Return arg Hliél{Q.ﬂ'(l’)} and remove z from Q.

xe
* DecreaseKey: Update ().7(v) with newkey.

The time complexity is |V |x ExtractMin + |E|x DecreaseKey

Runtime ExtractMin | DecreaseKey Dijkstra
Simple Array o(|V)) O(1) O(|v]?)
Binary Heap O(log |V]) O(log |V|) O(|E| -1log V)

Fibonacci Heap | O(log|V]) | O(1) (amorized) | O(|E| + |V |log|V])

2.4 Minimum Spanning Tree

Example 2.8 (Minimum Spanning Tree (MST)). Input: Connected, undirected
graph G = (V. E,w).

Definition 2.9 (Spanning Tree). 7' < E is a spanning tree if |T'| = |V| -1, G’ =
(V,T) is connected.

Goal of MST Find spanning tree 7" so that w(7) = Z w(e) minimized.

eeT
Theorem 2.10 (Cayley Theorem). The number of spanning trees of n-vertex complete
graph is n™ >
A cut (S,V — S) hasacutsetof S = {e¢ = (u,v) :ue S,v¢S}.
Claim 2.4.1. Any cycle C and cutset D has intersection |C' n D| even.

Fundamental Cycle: Given G and spanning tree 7' — FE, for each e € E\T, the

unique cycle in 7' U {e} is called Fundamental cycle.

Claim 2.4.2. For a fundamental cycle C related withe, Vf e Cn T, (T u {e})\{f}

is also a spanning tree.

If Tis MST, then w(e) = w(f).
Fundamental Cut: Spanning tree 7' < E. For each f € T, T\{f} has two

connected components, whose cutset is called fundamental cut.
Claim 2.4.3. Ve € D\T, (T u {e})\{f} is a spanning tree.

If T'is MST, then w(e) = w(f).

MST Algorithm There are some rules. Red rule:Let C' a cycle without red edges.
Select an uncolored edge in C' with max weight and color it red.
Blue rule: Let D be a cutset without blue edges. Select an un colored edge in

D with min weight and color it blue.

10

Greedy Algorithm:Apply red or blue rules in any order iteratively until all

edges colored.
Theorem 2.11. Greedy algorithm terminates and blue edges from MST.

Proof. Observed that during the algorithm, blue edges always from a forest. [

Invariant 3 MST T* s.t. T contains all blue edges and no red edges.

Proof. Proof by induction. If there is a MST 7™ contains all blue edges no red
edges now. If we apply blue rule, with cutset D and f € D but f ¢ T*, then for
fundamental cycle C of f,Vee C n T, w(e) = w(f). Since C has even edges in the
cutset by the claim, Je € C' n T' s.t. e € D, which contradicts the fact that f is the
edge in cutset D with min weight.

The case that we apply red rule is similar. O

Algorithm 2 Prim’s Algorithm
1: Initialize S « {s}.
2: while n — 1 times do
3: Choose e be the min weight edge in the cutset (S, V\S)
4: add e to T, another endpoint of e to S.
5: end while

Remark 2.12. It is compatible with the simple idea: Each time chooses the min
weight edge. However, it is more powerful since we only need to do this process
in the cutset.

It is similar to Dijkstra’s Algorithm. So its time complexity is O(|E| +
[V[log[V])

Remark 2.13. The first step need time complexity O(|E|log |E|).
The second step need time complexity O(|E| - «(|V'|)) using Union-Find data

structure.

11

Algorithm 3 Kruskal’s Algorithm

1: Consider edges in weight increasing order.
2: Add each edge to T' if not introducing a cycle.

WLOG we can assume edge weights are distinct.

Algorithm 4 Boruvka’s Algorithm

1: while < (n — 1) blue edges do
2: Simultaneously apply blue rule to each blue compunent.
3: end while

Claim 2.4.4. WHILE loop iterates < O(log|V|).

So time complexity is O(|E|log [V]).

Remark 2.14. There is a "contraction View". For each step, we can view each

component as a single point with edges to other components.

If the graph is Planar Graph, then |E| < O(V). At the i-th WHILE iteration,
1< oqvi)

So the time complexity is Z O(|E;]) Z @) (

Vil <
Vi

9i- 1) < O(|V|) which is linear!

Using the contraction view, we can get another algorithm:

Prim+Boruvka
* Run Boruvka for £ iterates.
* Run Prim on the contracted graph.

Remark 2.15.

For step 1, time complexity is & - | E]|.
% %4
For step 2, time complexity is |E| + u -log ’2—k
v
So the total time complexity is k|E| + — | | -log | |

12

Vi

Choose k = log,log, |V|, it comes to (loglog|V|) - |E| +
log, [V

O(|Elloglog [V| + [V]).

log, [V <

2.5 Minimum Arborescence

Example 2.16 (Minimum Arborescence). Input: Directed G = (V, E), source s € V
and weightw : £ — R.
We want to find an arborescence T' = (V, E) with root r of minimum total

weight.

Definition 2.17. Given directed G = (V,E)andre V,n = |V|,m = |E|, F < Eis

an arborescence if
e ['is a spanning tree if ignoring directions
* Vv e V,Junique pathr — vin F.

Or equivalently, /" has no directed cycles and every node v—r has a unique in-

coming edge.

For this problem, WLOG we can assuem that the root r has no in-degree and
assume w = 0.

For each n # r, let

Cheap(”) = arglnine=(u,v)eE{w(e)}

Claim 2.5.1. Let ' = {cheap(v)|v # r}. F'is arborescense = [’ is min-cost.

Define w,(u,v) = w(u,v) — w(cheap(v)). Suffices to find the min-cost arbores-

cence under w,..

13

If F"is not an arborescense, then 3 a directed cycle C with all edges of weight

Using the contraction view, if we contract "0-cycle" and keep this process re-
cursively. By taking degrees carefully we can easily confirm the legallity of the
contraction view. Then suffices to prove it is indeed the min-cost arborescence

when we expand after.

Theorem 2.18. The min-cost arborescence F when we apply contraction to 0—cycle is

exactly the min-cost arborescence in the original graph after expanding.
Lemma 2.19. 3 min-cost F* s.t. only 1 edge in F* entering C.

Proof. Our goal is to prove w,(F') < w,(F™).
Let Fi = F* n (C x C). Then |Fg| = |C] — 1.
Apply C-contraction to F*\ [}, we obtain an arborescence of G. (Easy to check)

So

Z wy(e) = Z wy(€)

EEF*\Fék eeﬁ

So w, (F*) = w,.(F) O

Proof of Lemma. Choose any v € C.

Let (z,y) € r — v be the first edge entering C.

Delete the edge entering C\{y} and add the edge of circle except the edge
entering y.

Then it is an arborescence of less cost. O

14

3 Dynamic Programming

3.1 Weighted Interval Scheduling

Example 3.1 (Weighted Interval Scheduling). Input: n jobs, {(s;, fi), w;}7—;. Want

to find) w;, maximum.

To make the structure simpler, we WLOG assume s; < s, < - -+ < 5,. We may

Algorithm 5 Search(z)
1: j < minid > 4,s; > f;.
2: Return max{Search(j) + w;, Search(i + 1)}.

find that there is a lot of repetitive computation. We can record each Search (i)

Algorithm 6 Search — Memorization(7)

1: If i > n, RETURN 0

2: If i # bottom, RETURN F[7].

(i) < min{jls; > i}

F[i] « max{Search — M(j(7)) + w;, Search — M(i + 1)}
RETURN F/[{]

It can be written as

FIi] = max{F[j ()] + wi, Fi + 1]}
Fln+1]=0
Such an equation is called Bellman Equation. So Dynamic Programming is a
method to solve the problem by finding the optimal solution of each subproblem.

We sometimes need to record the optimal solution of each subproblem to avoid

repetition.

15

3.2 Segmented Least Square

Example 3.2 (Least Square). We have n points {(z;, y;)}?_,. We want to find a line

Yy = ax + b to minimize

n

SSE = > [y — (az; + b)]? (3.1)

=1
Actually,
ra _ iy — (2 w) (2 i)
ny, 2t — (3,)"

\ n

Example 3.3 (Segmented Least Square). Input: {(z;,y;)};, ¢ > 0.
Goal: Minimize [= E + cL for piecewise line, where c is the hyperparameter,

L is the number of the segments.
WLOG, assume z; < x9 < -+ < Xp.
We can define its subproblem as

OPT[i] : min loss

when in putis (z1,11), -, (T, ¥i)-
Find solution OPT[n]. The boundary condition is OPT[1] = OPT[2] = ¢ and

the Bellman Equation is

OPT[Z] = mln{OPT[] — 1] + lji + C}

1<j=>i

3.3 Knapsack Problem

Example 3.4 (Knapsack Problem). Input: n items, w;, v; for its weight and value.

The capacity of knapsack is w.

16

If assume integral weight, then denote OPT[i,w] as the optimal total value
when in put is first knapsack capacity is w.

The Bellman Equation is

OPT[i — 1, w] w < w;
OPT[i,w] =

max{OPT[i — 1,w],v; + OPT[i — 1l,w — w;]},w = w;

It has time complexity O(nw), which is not a polynomial algorithm.

We can find another Value-Based DP: (Also assume integral values)
OPT(,v]: choose min weight items.

from item 1,2, --- , 7 so that total value > v.

The final solution for maxmial v s.t. OPT[n,v] < w.

OPT[i — 1,v]
OPTVi,v] = min

w; + OPT[i — 1, (v — v;) "]

0 v=_0
OPTI[0,v] = The time complexity is O(n?v).

+o0o v >0

Now we consider a a-approximation algorithm that ALG > o - OPT for
a e (0,1].

Lete =1-—q.

Algorithm 7 Knapsack Problem
1: Assume WLOG w; < W so that V > OPT.

2: Set K = i Let v, = [%]

n
3: Run value-based DP to find optimal solution 7" for I’
4: Return T as a solution to /.

17

It is a feasible solution and

> v = OPT(I')

€T
> v(S;I'), VfeasibleS

> o(T*, I')

_ /
-

ieT*

il

€T*

> 3 (&Y

i€T*

1

E€T* ieT*

= %OPT(I) —n

So ALG > Y K -} > OPT(I) — nK > (1 —£)OPT(I).
€T
The time complextity is O(n*V’) = O(n?¥%) = O(n3c ™).
Remark 3.5. The time complextity depends on the accuracy ¢ instead of the max-
imum value V since the accuracy is based on scale.

In other words, ¢! in time complexity represents not only accuracy but also

the "size" of scale.

Fully Polynomial-Time Approximation Scheme(FPTAS) Ve, 3 (1 — ¢)-

approximation algorithm with time complexity f(n,e) = poly(n, 2).

PTAS :Ve, 3 (1 — ¢)-approximation in time f.(n) = poly(n). For this algorithm,

itis (n-2:,n:).

18

3.4 RNA Secondary Structure

Example 3.6 (RNA Secondary Structure). RNA is a string b1bs - - - b, where b; €
{A,C,G,U}.

The secondary structure is what fold to form "base pairs" including:
U---AA--UC---GG--C

Mathematically, second structure represented by set of base pairs S = {(i, j)},
*) V(i,x) € S, (bi,bj) e{U---AA---UC---G,G---C}
*) no sharp turns: V(i,j) € S,i < j — 4,
*) non-crossing: Y(i,j), (k,l) € S, cannot have: < k < j < [.

Goal: Maximize |S|.

A direct idea is to construct those subproblems:

OPT[i,j — 1] b; not matched
OPT[i,j] = max
i<k<j—4

1+ OPT[i,k — 1] + OPT[k + 1,5 — 1] b; matched with by
OPT[i,j] =0wheni <j<i+4

3.5 Sequence Alignment(Edit Distance)

Example 3.7. For a wrong-spelled word, what cost do we need to make it right,
using the gap and mismatch.

Or what is its edit distance to the correct word.

19

Mathematically, for string (a; - - - a,,), (b1 - - - by,), @ matching M = {(¢,7)} such

that there is no (i1, j1), (i2,J2) € M s.t. i1 < iy but jo < j;. Define its cost

cost(M Z Qb + Z + Z 0

(i,9)eM i€[n],i notin M
jnotin M

Z lap; 18 the mismatch cost and D r,1 5 notin ar + 2je
(i,5)eM
cost

J is the gap

[m],j notin M

Define OPT|i, j] is the edit distance between a;as - - - a; and bybs - - - b;.

o+ OPT[i —1,7] a; not matched
OPT([i, j] = min =
= Qo +0 (5 — k) +OPT[i — 1,k — 1] a;matched with b,

However, for each case it can be divided into three cases:

-

OPT[Z o 17] - 1] + Xa;b,

OPT[i, j] = min { OPT[i — 1, 5] + 0

kOPT[z’,j — 1]+

The question is, if we need to trace the matching process, the space complexity
is O(nm), too large.

Here we use binary search.

Algorithm 8 Binary Search
1. Compute A[j] = d[(0,0) — (%,7)] and B[j] = d[(%,) — (n,m)],
2: find j* = argmin; A[j] + B[j].
3: Run the sub-process (0,0) — (%,7*) and (5, j*) — (n,m)

The complexity is still O(nm) + 1O(nm) + - - - + 5:O(nm) = O(nm).

20

3.6 Matrix Multiplication

Example 3.8 (Matrix Multiplication). Consider M - M - - - My, where M, isan;_; x
n,; matrix.
We want to find the optimal multiplicative order such that the time cost is

minimal.

Denote OPT|3, j] is the min from M, to M;.

Using the binary tree, consider the last multiplication

i<I<j

4 Flow Network

4.1 Definition

Example 4.1. For directed graph G = (V, E, s,t,c) where s is the source and ¢ is
the sink. ¢ : £ — R is the capacity function.

The st-flowis f : E — Ry, s.t.
1) Yee E, f(e) < c(e).

2) Yve V\{s,t}, Z flu,v) = Z f(v,u), ie. flow conservation.

(u,v)eE (v,u)eE
val(fy= 3, flsu) =); flus)
(s,u)eE (u,8)EF

Our goal is to maximize val(f)

An st-cut is a partition (A4, B) of V such that s € A, ¢ € B, the capacity

c(A,B) = 2 c(u,v)
(u,w)eE
ueA,veB

21

Claim 4.1.1. V¥ feasible flow f and st-cut (A, B),

val(f) < ¢(A, B)

Residual Network Given flow network G, feasible flow f, the residual network

Gy(v, Ey,s,t,cr) is foreache e E

crle) = cle) — fle) + f(e)

where u — v is on the flow.

Claim 4.1.2 (Weak Duality). f’is a feasible flow in G if and only if f@® f is feasible

in G, where

(f @ f)(e) = fle) + f(e) = f'(e™™™)

An augmenting path P is an unsaturated s — ¢ path in G;.

Algorithm 9 Augment (f, P)
1: Letd = reléi]glcf(e).
2: fore = (u,v) € P do
3: if ee E then
fle) = fle) +6

4
5: else

6: f(v,u) < f(v,u) =9
7

8

end if
- end for

Now we give the Ford-Fulkerson Algorithm.

Theorem 4.2. If F-F algorithm terminates, it finds a max flow.

22

Algorithm 10 Ford-Fulkerson Algorithm
1. f<—0
2: while Jaugmenting path P in G do
3: Augment(f, P)
4: end while
5: return f

Claim 4.1.3. V st-cut (A, B), st-flow f, we have

val(f) = Y fluv)— Y flu,v)

u€eA,veB ueE veEA
(u,w)eE (u,v)eE

It proves the previous claim weak duality.

Proof.

val(f) = > f(s,v) = D> flu,s)

(s,v)eE (u,8)eE
+ 2 Z f(uaw)_ Z f(w,v)
weA—{s} \ (u,w)eW (w,v)eE

Proof of the Theorem 4.2. Consider the residue graph G.

Denote A to be the set of nodes reachable from s. B = V\A. t € B since there
is no path from s to .

Then st-cut (A4, B) has capacity ¢f(A, B) = 0. Soforu € B,v € A, since f(u,v) #

0= c¢(v,u) > 0, we have c¢(v,u) = 0= f(u,v) = 0.

val(f) = >, fluv)— >, flu,v)

ueAveB ueB,veA
(u,v)eE (u,v)EE

23

= Z c(u,v) —0

ueA,veB
(u,v)eEE

c(A, B)

Now sulffices to proof that the algorithm terminates.

Lemma 4.3. If capacities are integral and less than c, then F-F terminates in O(nmC')

time and returns an integral max flow.

The lemma implies we should choose some proper path so that it will termi-
nate fast.
Assume the integral capacities < C' and G;(A) denoted as G with edges of

capacites > A.

Algorithm 11 Capacity-Scaling Algotihm

1: Initiate f = 0, A < largest 2" < c.

2: while A > 1do

3: while Jaugmenting path P in G;(A) do
4 Augment(f, P)
5: end while

6: A —A)2

7: end while

Theorem 4.4. The C-S runs in time O(m?log c) since the step 2 runs for O(m) itera-

tions.

Lemma 4.5. Every time inner WHILE terminates, max-flow value is less than val(f) +

mA.

Corollary 4.6. Each inner WHILE iterates < 2m. The times complexity is O(m?*log C')

24

Proof of Lemma. We let A be all nodes reachable from s and B = S\ A.

val(f) = >, fle— > fle)

ecFE from A to B ecFE from B to A
>) (de=A) = D (4
ecFE from A to B ecFE from B to A

= ¢(A,B) — > A

eeE between A, B
> ¢(A, B) — mA

> MaxFlow — mA

Algorithm 12 Shortest Augment Path
Initiate f < 0.
while 3s — ¢ pathin G do
Find P : s — t in G using least number of edges.
Augment (f, P).
end while

Lemma 4.7. Length of the shortest augmenting path never decreases.

Lemma 4.8. After < m iterations, length of the shortest augmenting path strictly in-

creases. Time complexity is O(nm?)

augment(f,P)
_

Proof. Assume f /' Denote l(u),!'(u) as the length of the shortest s — u
pathin G, G respectively.

Our goal is to prove [(u) < I'(u).

[(u) determines "distance" to s.

Define the level graph as the set of all (u,v) € E(Gy) such that I(u) + 1 = [(v).
Call edges not belong to level graph as back edge.

25

Observation Consider any e € E(G)\E(Gy), e must be a back edge in G.
Choose u such that I'(u) < l(u) and !'(«) minimized.

If (v, u) is the edge in the shortest path of G

() <l'(w)=0(u)—1<l(u) —1<l(u) -2

so (u,v) is not a back edge in G, hence (v,u) ¢ E(G), which causes contradic-

tion. L]

Lemma 4.9. After < m augmentation, Ju, [(u) strictly increases. It goes on no more n?

times, so the time complexity is O(n*m?).

Proof. This lemma is much easier than the previous lemma.
Noticed that each augmentation adds back edges and removes at least one

edges in level graph. O

Proof of Lemma 4.8.

Claim 4.1.4. During the period when [(t) doesn’t increase, the added edges in
residual graph does not appear in shortest augmenting path.

Suppose for contradiction: 35 < i, [;(t) = l;(t), 3 (v,u) appears in the shortest
augmenting path P in Gy, and [;(v) = [;(u) + 1.

Choose the edge (v, u) with smallest i and then with largest /;(u).

Then [;(u) = [;(u) + 2. So

26

Recent work [Chen et at al. "2022] we can do in O(m!*°()),

4.2 Appllication
4.2.1 Bipartite Matching

Example 4.10 (Bipartite Matching). For Bipartite graph G' = (U, V, E), a matching

M c E, we want to find M to maximize |M]|.

We can construct two virtual nodes s, ¢ such that s — all nodes in U and ¢t —
all nodes in V/, with capacity 1.

Then the maximum capacity of flow in the augmented graph is what we need.

So the meaning of capacity can be generalized as the number of one node
who can accommonded

Now consider so-called "perfect matching", ie. |[M|=|U|=|V|.

Note that 3 perfect matching s.t. V.S < U, [['(5)| = |S|.

Theorem 4.11 (Hall’s Theorem). The inverse still holds. ie. IfVS < U, |T(5)| >
|S|, then 3M is perfect matching if | M| = n.

Proof. It suffices to prove max-flow= n. Or equivalently, to prove min-cut> n.
ie. Vs-tcut (A, B),c(A,B) = n.
c(A,B) < +oo;>ifueAthenF(u) eA=T(AnU)cAnV.

c(A,B) = |BnU|+|AnV|
>n—|AnU|+|I(AnU)|

=n

27

O]

Remark 4.12. Here we mark the weight between U and V' to be o such that the
fact 1 holds.

The duality of max-flow and min-cut is very useful in this problem.

4.2.2 Network Connectivity

Example 4.13 (Network Connectivity). Directed G = (V,), source s, sink . Then
Max-flow = the maximum numbered of edge-disjoint s — ¢ path. Two paths are
called edge-disjoint if they have no edge in common.

Connectivity of the graph is defined as the g/li% |E’| such that s — ¢ discon-

nected in (V, E\E’)

Theorem 4.14 (Menger’s Theorem). Connectivity=min-cut=max-flow=maximum

number of edge-disjoint s — t path.

4.2.3 Circulation

Example 4.15. Directed graph G = (V, E) with capacity ¢ : £ — R, and node
demand d: V — R. (d(u) < 0 means the supply node)

We have the flow conservation

>, fle0— >, fle)=d(u), Yu

einto u e out of u

Our task is to decide whether there exists a feasible flow f satisfies the flow

conservation.

Indeed, we can consrtuct two vitual nodes s, ¢ such that s to all nodes with
demand d < 0, equipped with capacity d and ¢ has edges from all nodes with

demand d > 0, equipped with capacity d.

28

Then the task is equivalent to check whether the max-flow saturates all edges
out of s and in of .
Moreover, we can use the cut to discuss.

We have:

1 feasible circulation < 3 cut (A, B) s.t. ¢(A,B) < 2 d(v).

veB

Remark 4.16. This crieterion, similar as Hall’s Theorem 4.11, is so-called "poly-
nomial proof", under the meaning that for a specific case, we can give a proof in

polynomial time to check.
Flow Lower Bounds If we have a capacity constraint such that
lle) < fle) <cle),Vee E

Then it suffices to add the lower flow at first. For example, for two nodes with

demand 0 and edge with amount in [4, 6], we can replace it with

[0,6]

4 —4

4.2.4 Survey Design

Example 4.17 (Survey Design). We ask n; customers about n, products. Ask cus-
tomer 7 the number between [c;, ¢;] products and ask the number between [p;, p’;]
customers questions about product j.

We want to find if there is a feasible survey design.

It is equivalent to give each edge a weight interval, where s — i with [¢;, /],

i — j with [0,1] and j — ¢ with [p;,p/].

29

4.2.5 Airline Scheduling

Example 4.18 (Airline Scheduling). Flight ¢ from the origin o; at time s, to the
destination d; at time f;.
We want to know what is the minimum number of crews in flights that can be

scheduled. A feasible schedule for one crew is a set of flights {i, s, - - - } such that

fir < Sipyrr e = Opgr.

We can construct a graph with nodes o; — d;. The edges o; — d; with weight
[1,1]. If the schedule from flight i to flight j is feasible ie. f; < s;, we let edge
i — j with weight interval [0, 1].

Then a feasible flow gives a feasible schedule. To limit the total amount, we

can determine the minimum number.

Remark 4.19. The weight interval have a broader meaning in this problem. With

different view of nodes and edges, we can transform it into different limitations.

4.2.6 Image Segmentation

Example 4.20 (Image Segmentation). For an image, p;; > 0 is the separation
penalty if neighbors 7, j belongs to different partitions.

a; = 0 is the likelihood that i € A (foreground) b, > 0 is the likelihood that
i € B (background)

Our goal is to partition pixels into A, B, to maximize

DI

€A jeB i,j neighbors
[{i.i}nAl=1

30

It is equivalent to

minimize — Z a; — Z b; + Z Pij

i€A jeB 4,j neighbors
{i.g}nAl=1

< minimize Z a; Z b + Z Dij

i€B jeA 1,j neighbors
[{i.j}nA|=1

Then we can construct a visual source with edges to all pixels with weight a;, and
a visual sink with edges from all pixels with weight b;. All neighbors of pixel have

edges of weight p;; from each other

Remark 4.21. This example focuses on the optimal sum of net flow. To construct
visual source, sink and proper edges, we can optimize some sum of structure with

related constraints.

4.2.7 Project Selection

Example 4.22 (Project Selection). v — w, v depends on w. Our goal is to find a

feasible set S of projects(if v € S, then all prequisites of v € S) to maximize

> p(v)

veS

Introduce the virtual source node s and the virtual sink node ¢.

Assign a capacity of o to each prerequisite edge.

Add edge (s, v) with capacity p(v) if p(v) > 0.

Add edge (v, t) with capacity —p(v) if p(v) <0

Then the min-cut (A, B) satisfies:

31

1) Y(u,w)e E,ue S=we A

2)

c(A,B)= > pv)+ > (=p(v))

v veA
p(v)>0 p(v)<0
= > p)= > p)= > pv)
v:p(v)>0 veEA veA
p(0)>0 p(v)<0
= >, pv) = p)
vip(v)>0 veA

So it suffices to compute ¢(A, B)!

Remark 4.23. Use edges of capacity oo, we can reduces some situation we do not

want.

4.2.8 Baseball Elimination

Example 4.24. Given set of team 5, distinguished team z € S. Team x has won w,,
games already. Team z and y play each other r,, additional games.
Given the current standings, is there any outcome of the remaining games in

which team z finishes with the most (or tied for the most) wins?

Assume team z wins all remaining games. M = w, + Z "o
T
We want to arrange the remaining games that do not involve team z so that all

other teams have < M wins.

¢ Construct two virtual nodes s and ¢.
* Assign a capacity of « to the edge from the match i — j to team 7 and j.

* Assign a capacity of M — w; to the edge from team i to ¢.

32

* Assign a capacity of r;; to the edge from team s to the match i — j.

Then z can possibly win the most games iff the max-flow saturates for all edges

from s.

Certificate of Elimination 7 < {2,3,--- ,n}, w(T) = Zwi,r(T) = Z Tijs

€T i<jeT
w(T) +r(T) o M.
7]
Noticed that if the following equation holds, then team z is theoretically elim-
inated.
w -~ M @.1)

Theorem 4.25. Team q is theoretically eliminated iff 3T < {2,3,--- ,n} s.t. (4.1) holds

T)+r(T)

Proof. IEVT < {23, ,n}, w(a7 < M, then

min — cut > Z Tij = 7“({2737"' ,n})
l<i<is<n

That’s because, if we consider any s — ¢ cut (A, B) such that ¢(A, B) < 4.

1) ie B=matchi— je B, Vj.

(A B) =Y (M—w)+ > 1y

€A i€B or jeB
I<i<j<n

= r({2,3,-++,n}) + [A\{s}] - M — w(A\{s}) — r(A\{s})
= 7“({2, 37 e 7n})

The inverse is trivial. O]

Remark 4.26. Note that we use the duality of max-flow and min-cut in this prob-

lem.

33

5 Introduction to Approximation Algorithm

There are plenty of NP-hard optimization problems.

Example 5.1 (3-CNF). For n Boolean variables {z1, za, - , z,}.
A literal is either a value x; or negative value z;.
A clause is a disjunction of literals. e.g. (z1 v 22 v 73).
A CNF is the conjunction of clauses. e.g. (21 v 2 v @3) A (21 v T2 v 23).

A 3-CNF is a CNF with at most 3 literals in each clause.
Decision problems Check whether we can choose x4, - - , z,
For maximization problems, A is an a-approximation algorithm if
Val(A(I),I) = a- OPT(I), a € (0, 1]
For minimization problem, it will be
Val(A(I),I) < a-OPT(I), a € [1,0)

Max-cut problem: Find the maximal number of bichromatic edges using 2

colors. We have

= Sa;+b 1 1
dge(A, B ——Em »b->§ ‘7 _ J|E|l = —OPT

i=1 =1

So this is a :-approximation algorithm for max-cut problem.
However, if we consider it as a minimization problem, the value can be 0,
so the scale can be +co0. Hence, it is different if we consider the approximation

algorithm of min-uncut or max-cut problems.

34

Decision Problems

Natural Optimization Problems

Is there a truth assign-
ment that satisfies the 3-
CNF formula?

Maximize the number of clauses sat-

isfied

by a truth assignment.

3-coloring (NP-complete)

Min-coloring

Max-3-cut: Max number of
bichromatic edges using 3 col-
ors.

Min-3-Uncut: Min number of
monochromatic edges using 3
colors.

2-colorin (P complete)

Max-cut

Min-Uncut

Vertex Cover: Given G =
(V, E), k. Decide whether 3
Vertex-Cover using < ver-
tices.

Min-vertex-Cover: Given G = (V, E).

Find

S cV st Ve = (uv) € E,

{u,v} n S| =1, |5 is minimized.

Table 1: Comparison of Decision Problems and Natural Optimization Problems

c vs. s Decision Problem Decide whether OPT(I) > ¢ or OPT(I) < s. If

OPT(I) = ¢, return YES, else if OPT(/) < s, return NO.

¢ vs. s Decision Problem Given [/

Val(z; 1) > s.

Theorem 5.2. Suppose A solves c vs. s Search problem in poly-time, then 3 poly-time A’

that solves c vs. s decision problem.

The algorithm is as follows:

35

s.t. OPT(I) > ¢, find a solution z

Algorithm 13 Greedy

initiate A, B — ¥
for i from 1ton do
Let a; <— number of edges between A and i.
Let b; < number of edges between B and .
if a; < b; then
A— Au{i}.
else
B — B u {i}
end if
end for

Algorithm 14 c vs. s Search
1.z — A(Il)

2: if Val(z; 1) = s then
3: return YES

. else

i~

5. return NO

6: end if

Fact 5.3.

(1) A is a-approximation algorithm = A is c vs. ac search algorithm Ve.

(2) 3 cwos. s(c) search algorithm = 3 a-approximation algorithm where o = inf {ﬂ}
c C

(3) (contrapositive of A) c vs. s decision problem "hard” = *-approximation algorithm

"hard”.

Remark 5.4. The same ¢ vs. s algorithm in max-cut and min-uncut problems

might correspond to quite different approximation ratios.

5.1 Set-Cover
Example 5.5 (Set-Cover). Universe U = {1,2,--- ,n}. S1,5, -, Sy < U.

36

Our goal is to find 7" < {54, - - - , Sy} such that UgerS = U and |T'| minimized.

Of course, it can be represented as Max-Coverage problem: Given additional
input k. FiInd 7' < {Sy,--- ,Su} s.t. |T| = k and | Uger S| maximized.
It has a greedy algorithm:

Algorithm 15 Greedy
1. T— @&

2: repeat

3: Let S; be the set that covers the most uncovered elements.
4 T <—Tu{S}

5. U« U\S,.

All elements covered set cover
6: until

T =k max-coverage

. . 1\ .
Fact 5.6. Suppose 3 m sets covering U. After t choices, T covers 1 — (1 — —) fraction
m

of elements.
Corollary 5.7. The greedy algorithm is |ln n| approximation for set-cover

Proof. Let m = OPT. After t = [Inn| - m choices, number of uncovered elements

1 [Inn]-m 1
(1 — —) n=-—=1
m n

Corollary 5.8. Greedy is 1 vs. 1 — * approximation for Max-coverage.

Proof. Setm = k. After t = k choices, coverage of T

1 1
I—-(1-2)fz1-=
(k) e

37

O]

Fact 5.9. 1 vs. 1- v approximation for ma-coverage = [log, ., +|-approximation for set-

cover.

Proof. "Guess" k = QP

Repeatly invoke A(k) - [log, ., +] times. Then number of uncovered elements

n- (1 —~)loai—] >n.l -1
n

[
In fact, we can construct an extreme case for greedy algorithm:
Algorithmic Gap of Greedy for Min-Set-Cover ..
* More refined hard instances. Far any integer ¢ = 2 and n >> ¢, we construct the sets as below:
S1, 85, ..., S¢ partition U into equal parts.
Sc+1 includes the first 1/c fraction elements of Sy, S5, ..., S,
Sc+2 includes the first 1/c fraction elements of S; — S¢4+1,52 — Sc+1, -2 Sc — Sc+1,
S.+3 includes the first 1/c fraction elements of S; — 5,41 — Sc42, o0y Se — Ser1 — Scra,
« till S¢yq where a =log;_q/c %
1-1
5c+1fc£2><5 55+2!n_(2 /) xc
* Analysis. The optimal solution only chooses §y, S, ..., S..)
Assuming Greedy breaks ties in the worst way, 5t [il | i | el g J
Greedy may sequentially choose S¢41, .-, Sc+ar S1) > Sc- Sz[e o 0 o ol o olle-l-e J
* Greedy gap ratio for this instance is:
chx _ _Innfc
L= prPyT— Inn (when ¢ = o).
SC[e o 0 o ofe ooo------o}
AN 19

Figure 5.1: Extreme case for greedy algorithm

5.2 Weighted Min Set-cover and Randomized Rounding

Example 5.10 (Weighted Min Set-cover). Given n elements, M sets, Sy, -, Sy <
U. Each set S; has a weight w(.S;) > 0.

38

Now select T' < {Si, -+, Sy} such that Z w(S) minimized.
SeT

M
Integer Program: Minimize Zw(Sl)xl Subject to Z x; = 1,V5 € U, where
i=1 i:j€S;
x; € {0,1}, Vi e [M].
If we relax the integer constraint, we have an LP relaxation: z; € [0, 1], which

can be solved in poly-time since it is a linear program.

We need "rounding" to transform fractional solution to the integer solution.

5.2.1 Randomized Rounding

If {}} is the optimal LP solution. For each s;, select s; € T' independently with

probability min{az}, 1}. Then

Now we want to estimate Pr[T" covers U].

If there is some ax; > 1, then Pr(7 covers U) = 1. If Vi, z} < 1, then

Pr[T coversU| =1—Pr[3jeU,j ¢ T]

>1-) Pr[j¢T]

jeUu
=1- Z 1_[(1 — min{az],1})
7eU i:j€8S;
>1- Z 1_[exp(—ax) (If some =} < 1, the probability will be 0)

jeU i:jes;

= 1—Zexp(—2amf)

jeUu JES;

=1-— Z exp(—a)

jeUu
Therefore, we obtain

39

Claim 5.2.1.

«

Pr(every element covered) > 1 —n-e”

If we set &« = Inn + Inlnn, then

Pr[e,]Pr[every element covered] > 1 —n - ¢~ ininn
B 1
B nlnn
1
2 R
Inn

We should also focus on E(w(T")) < a- OPT. Here we use the Markov Inquality:

Theorem 5.11 (Markov Inequality). For Random Variable X > 0, Pr(X > tEX) < 1

Proof.
EX =E[X|X > o] -Pr(X > a) + E[X|X <a] - Pr(X < o)
> a-Pr[X = a
Therefore, Pr[X > o] < EX O
So

Inn+Inlnn
Ny > S T—————————
Pr[e,]Pr ;w(sz>yz (Inn +2Innn)OPT Inn+2Inlnn

Inlnn

Inn+2Inlnn

40

So the union probablity

Pr[e A &] = Pr[e1] — Pr[es]

- Inlnn 1
“Inn+2Inlnn Ilnn
InInn. poost 1
=0 1-—
(Inn) n100

Theorem 5.12. With probability Q(®22), LP+randomized rounding returns a (Inn +

21In1n n)-approximation solution.

The question is how to boost the probability. Indeed, if we independently

round N times,

Inl
Pr[31 trial succeeds] > 1 — [1 — Q(1”11 nn)]N
nn
Inlnn
> 1 — exp(—(— - N))

>1—exp(—Q(n-lnn))=1—e"

if we set N «— (Inn) - n in the last step.

Apply the method to Max-coverage problem, Integer Problem is to max Z Yj
j=1
such that

M
=1
yi < > i, Vj € [n]
JES:

z; € {0,1},Vi e [M]

So the LP relaxation is to relax x; € [0, 1].

41

*

Repeat £ times and select set ¢ with probability %

r

<
Il
_

E[coverges| = » Pr[j covered]

I
1=
—_
|
/N
—_
|
hd
%
N———
B

Jj=1 JESs
> 2 (1 —exp(— Z xf))
7=1 jEeS;

s

<
Il
Jut

> (1 - exp(—47)

>a2y;:a-LP>a-OPT

j=1
where v =1 — 2

The estimation is tight for this rounding if we consider the set &/ = {0, 1}* and
S@O = {CL € U|6Ll = 0}, 5@1 = {CL € U|CL, = 1}
5.2.2 Integrality Gap

Instance [is a ¢ vs. s-Integrality Gap (IG) instance if LP(/) > cand OPT(I) <

s. The gap ratio is <
S
1. Large IG = Inaccurate estimation of LP.

2. The estimation of rounding algorithm is usually
rounding > --- > - LP > a- OPT

Since rounding < OPT in maximization problem, if IG is large, o can be very

large and hence the approximation ratio is very bad.

42

M

For instance, consider the set-cover problem that is to minimize Z x; S.t
i=1

D= 1,YjelU, =z e[{0,1},Vie [M]]

JeSi
relax the condition z; € [0, 1] and consider the set i/ = {0,1}9\{0} and Sz = {l €

U:lTa=1 (mod 2)} for a € {0,1}? with the size M = 29, n = 27 — 1.

2= o £ ()
|Sal =

Claim 5.2.2. LP=2

Proof. Take x5 = 2% Then 2 Sz = 2. And the LP constraint met where

2 1
veeu,) 50 = Pracoape[fe S =2x 5 =1
565&
Certainly LP > 2, s0 LP = 2. O

But we also have a claim about OPT:

Claim 5.2.3. OPT > q. So the instance is a 2 vs. ¢ IG with ratio = logy(n+1) =

In(n+1)
2In2 °
Proof. For any Sg,,--- ,Sa,_,, suppose Sg, U --- U Sg,_, is a cover of U. Then
©S&1 ﬁ-“ﬁg&qil = {6}
< {ee{0,1}7: Ta; = 0Vi e [¢ — 1]} = {0}
which is impossible!]

43

I is an a-Integrality Gap instance if

LP(I) < L - OPT(D)

(0%

1
Then we indeed prove that o can be 3 logy(n+1) < In(n + 1) in Min-Set-Cover
problem.
Take U = {1,2,--- ,n}. M are C - klnn sets, each of which s; includes each

J € U independently with probability %

Claim 5.2.4. When C > J, the probability

Proof. Consider x; =

Fix j € [n].

- 1-oxp (e~

(
2
M
> loeolg

l—¢)ln(l—¢))- %)
)

>1—exp(—2Inn)

Here we use the Chernoff bound with a high relation of central limit theorem.

Theorem 5.13 (Chernoff Bound). X;, X5, -+, X,, € [0,1] a.s. and EX; = p,;. Let

44

X=X+ +X,,EX = p. Forany 6 > 0

66 H

n
Pr[X < (1 - 5)#] < [(1_65)175]

Claim 5.2.5. For k > 2 and n = n(k, ¢, C) large enough, we have
Pr[OPT = (1 —¢)kInn] = 0.99

Proof. Letz = (1 —¢)klInn.
OPT > z « ¥S e (M), S doesn’t cover U. We consider probability of the
latter case.

Now fix S € (1), Pr[S cover U] is actually

Pr[S cover U] = Pr[Vj e U,3S; € S,j € S;]

= Pr[3S5; € S,1€ 5"

(o)

< exp(=n(l - 7))

1
"2 exp(-nexp(~(1-)1+ 1) Inn)

k

LR

exp(—nexp(—(1 — g) Inn))

>
<
= eXp(_n . n*(lfg))

— exp(—n’)

45

So

M M e
Pr[3S € ([N]>,8 cover U] < < ; > -exp(—n2)
C.e (1—e)klnn
< <) -exp(—n

1—¢

N

)
< exp(—ni)

< 0.01

as n large enough. Here we end the proof O

So using Randomized construction, o can approach (1 — ¢) Inn for any e.

5.3 Hardness of Approximation
5.3.1 PNP classes

For £ € {0, 1}* is the 0— 1 encoding, a problem is the set of some 0 — 1 encoding
and a decision problem is to decide whether £ belongs to it.
For instance, £, is the set of all (0 — 1 encoding) of set cover instances where U

can be covered by k sets. We define

P = {L : L can be poly-time decided by a (deterministic) Turing machine}
NP = {L: L can be poly-time decided by a non-deterministic Turing machine}

NP problems are all problems that can be "verified" in poly-time. Explicitly,

for input instance x € {0,1}*, the prover is based on z, providing a "proof"
y € {0, 1}* that |y| < poly(|z|), however, the verifier is a poly-time algorithm that
accepts z,y and outputs YES/NO.

In other words, £ € NP < 1 a prover-verifier system such that

46

¢ Completeness: Yz € £, 3 proof y s.t. verifier returns YES in poly-time.

* Soundness: Vz ¢ L, V proof y, verifier returns NO in poly-time.

The equivalence is because we actually can "guess" the proof y in a non-
deterministic TM.

If P=NP, then if we can verify proof in poly-time, we can also construct it in
poly-time. There isn’t innovation anymore!

NP-complete: £ is NPC if

1) £ eNP

2) VL eNP L' <, L ie. L' canbereduced to £ in poly-time.

Equivalently, if some NPC problems can be solved in poly-time, then P=NP.
If only 2) in the definition of NPC holds, then it is a NP-hard problem.
We define the polynomial reduction M <, L if

3 poly-time algorithm A such that Vz € {0, 1}%,

* (completeness) = € M returns YES = A(x) € L returns YES.

* (soundness) x € M returns NO = A(z) € L returns NO.
Observed that if M is NP-Complete and M <, £, then L is NP-Hard.
Theorem 5.14 (Cock-Levin). 3-SAT is NP-Complete.

Proof. VL € NP, need to show L <, 3-SAT.

Let A be the poly-time verifier (DTM) for L.

Now we consider the original DFA, which needs start, process and after, de-
noted as (s, p, a)

For time ¢, the tape can be

t(_t)M, o ,ts\?, a(t), S(t),p(t)

47

where the transition function is

tET) _ (tET—l)’ Oé(T_l), S(T_l),p(T_l))
N g)
p(T) = ...

ol — ..

which is a compose of bool function. So any DFA process can be converted to

a 3-SAT instance.
O

Theorem 5.15 (Max-Coverage). Deciding whether Max-Coverage=100% is NP-

Complete.
Proof. We divide it into two parts:
1. Max-coverage=1 is NP.

2. 3-SAT <, Max-coverage=1.

Consider any 3-SAT instance I. We have variables z;,---,z, and clauses
Cl, " 5 Cm.

Denote U = {x1, -+ ,xn,¢1, , ¢} and sets Sy, Sa, -+, Sn, Spy1, -+ 5 San. For
1=1,2,--- n,

Si = {z;} U {c; : ¢; contains z;}
Spri = {xi} U {c¢; : ¢jcontainsz;}

Let k =n.
Completeness: If [satisfiable, then 3o : {z;} — {0,1}, choose

48

S; ifo(z;) =1
Sn+i if O'(.T,L) =0
1 if S; chosen
Soundness: If J is YES, for I, let o(x;) = . O

0 if S;;, chosen

Now we want to consider the approximation problem.

1 vs. 1 Max-Coverage is NP-H but what if decide the gap-version s vs. c.
Observation If we could prove c vs. s M-C is NP-H for ¢ > s. Then 2 approxi-
mation M-C problem is NP-H.

Theorem 5.16 (PCP theorem). 3¢ s.t. Max — 3 — SAT,; ;. is NP-Hard.

We give an introduction for PCPs.

Definition 5.17 (Probability Checkable Proofs). Verifier: input instance = and
proof y.

Reads =, compute a (joint) distribution D over the locations in y, and a Boolean
function.

Sample i, j, k, f ~ D.

output YES iff f(y;,y;, yk) = 1.

* (completeness) If x is YES, then 3y s.t. Pr[Verifier accepts| > c.
e (soundness) If = is NO, then Vy, 4 Pr[Verifier accepts] < s.

Then PCP theorem is equivalent to

Theorem 5.18 (PCP theorem). e > 0 s.t. every NP problem has a PCP system with

c=1s=1—=¢.

49

Definition 5.19. PCP_ ,[r, ¢| denotes set of languarges that admits a PCP system

with ¢, s, r, ¢ parameters. Explicitly,

* Prover reads input, outputs poly-length proof with unbounded computa-

tional prover.

¢ Verifier in poly-time reads input and » random bits, (deterministically by
input and random bits) computes ¢ locations in the proof, reads the ¢ bits in

the proof and decides YES/NO.
* The systems satisfies completeness and soundness:

- (Completeness) Input is YES instance = 3 proverPr|Verifier accepts| >

C.

— (Soundness) Input is NO instance = V proverPr|Verifier accepts]| < s.
Observation 5.20.
J PCPL%[O,O] = P.
. PCPL%[O,poly(n)] = NP.
. PCPl,%[O(log(n)),O(l)] < NP

For the final observation, we actually can construct a Verifier to enumerate all
possible random bits in {0, 1}" to return YES if there is some possibility larger than
c.

Indeed, PCP theorem is actually,

Theorem 5.21 (PCP theorem).

PCP,[O(logn), O(1)] = PCP, 1[0(logn),O(1)] = NP

50

Proposition 5.22. PCP theorem < 3s < 1, Gap — SMAXSAT, , is NP-Hard.

Proof. " =": Our goal is to prove 3SAT <, Gap — SMAXSAT, , i.e. givena3-SAT
instance ¢, we can construct an instance ¢ in poly-time such that OPT(¢) = 1 =
OPT(®) = 1.

35SAT = GAP — 3MAXSAT, 1 is NP-hard. By PCP theorem, 3 a prover-verifier
system for 3-SAT that with ¢ = 1,5 = 1, = O(logn),q = O(1)

Prover provides proof 7 € {0, 1}7.

Given ¢, V7 € {0, 1}", verifier computes
ly,--- .01, e{1,2,--- N}

f:10,137 — {0, 1}

find 3— CNF g over g+ q-29 variables {z-} and ¢ - 27 clauses ¢z such that f(y) = 1
iff 37€ {0,1}9?" g(,2) = 1.
Construct ¢ with variables {z,xs, -+ , 25} U | . z; and clauses /\ _ ¢;.
Completeness: If 37 such that Prz[Verifier accepts| = 1. Then V7, 3z7 such that
cz = 1.

Soundness: VZ, Prz|Verifier accepts| < Consider a solution ¢ to ®. Let

1
3

T = {7 : Verifier rejects o(X) under 7}. ThenT' > 1 - 2".

V7, o doesn’t satisfy all clauses in Cr so the number of unsatisfied clauses

>T|=3-2.

T 2.9 1
V&l(UZ@)gl—#zl_Q—zl_
27’.q.2q 2r.q.2q 2q2q

" <" VNP language £ <, GAP — 3SAT, ;. Then

L € PCPy,[O(logn), 3] < PCP, 1[O(log(n), O(1))]

51

Theorem 5.23. Ve > 0, GAP — 3SAT, 1, 1s NP-Hard.
Corollary 5.24. Ve > 0, (§ + ¢)-approximation Max3SAT is NP-Hard.

The corollary is equivalent to Ve > 0, Gap3SAT is NP-Hard.

175,%+5

Remark 5.25. It implies that it is hard to find an algorithm better than random

algorithm. It also shows that perfect completeness is sometimes very hard.

5.4 Label-Cover Games

To prove the theorem, we need to consider a constraint Graph G = (U, V, E),
which is a bipartite graph.

Proveris a function o : U — [K],V — [L].

Constraints: For each e = (u,v) € E, . : [L] — [K].

Verifier: Uniformaly sample e = (u,v) € E, accepts only if 7.(c(v)) = o(u).

The system is also called "2-Prover-1Verifier Game" or "Projection Game".

More generally, 7. < [K] x [L].
Claim 5.4.1. PCP Theorem implies that 30 > 0, Gap — LCgﬁfg:@j) is NP-Hard.

Proof. Reduce from Gap — 3SAT, ;..

\
o

]

Var

Clause

Var

Clause

Var

Var

52

2

Variables z; have o(z;) € {0,1} and Clauses ¢; = zj, A 27,

to represent the state of c;.

5.4.1 Paralled Repetition

Given H = (G(U,V, E), K, L, {r.}).
HE = (GO KL)

where

G®t = {(u17u27 e 7ut)a (Ul,UQ, Tt 7UT)}

A x5 have o(c;) € [T7]

]

7T(u1,v1),~~,(ut,vt) = {((O[l, T 7at)7 (617 T 7575)) : (ai; /Bz) € 7T(ui,vi)}’

It is easy to check that if H is a projection game, H®' is also a projection game.

We wonder whether the following theorem holds

Theorem 5.26 (not quite true).

OPT(H®) < OPT(H)'

There is a counter-example for U = {uy,us},V = {v1, 02}, K = L = 4and G is

fully connected. [K], [L] < {u,v} x {1,2}
T (uiwy) = {((u’ i)v (u’ Z))v ((Uvj)a (Uvj))}
Clearly, OPT(H) =

1
2
However, OPT(H®?) =

l\J

Let o (i, i) = (v, 01), (v,01))), 0 (0355 03,)) = ((w, 1), (v, J2))-

So verifier accepts if i1 = js.

However, the following theorem holds:

53

Theorem 5.27. Suppose H has alphabet size less than k and OPT(H) < 1 — 4. Then

53t

OPT(H®") < eXp(_Q(log e

)

Corollary 5.28. V6 > 0, 3 K, L such that GAP — LC(K, L), s is NP-Hard.

In fact, the above hardness still holds even when the constraints graph is reg-
ular and (and |U| = |V])
Recall max-coverage problem is: U = {1,2,--- ,n}, 51,52, -+ , Sy < U, k < m.
1

Our goal is to select k sets to maximize Il |unon of selected sets|.

We have proved that (1 — 1)-approximation is NP-hard.
Theorem 5.29. Ve > 0, Gap — MC, s . is NP-Hard.

Proof. Suftfices to reduce LC case to M case.
Let W = Upwyer Tuw % {(u,0)}, [W] = 2" |E|, where T,,, = {0, 1}*.
Denotes

Tuv,a,(] = {f Lo = O}

ST

Tuv,ﬂuv(b’),l ={7: Trypw(B) = 1}

Let
Sua = U Tuwvao X {(u,0)},YVue U, a e [K]

(uv)eE

S'UwB = U Tu’u,ﬂ'm,(ﬁ),l x {(u7/0)}7vv € ‘/7/8 € [L]

(uv)eE
Take k = |U| + |V].
Completeness: 3o satisfies all constraints in LC. Then select {S,, (), Sv,0(v)} tO
achieve 100% coverage.

Soundness: If OPT(LC) < 6, = OPT(MC) < 3 +¢.

54

Otherwise, if 3 set selection achieving 2 + ¢ coverage, then one can "decode" a

o such that Val(o; LC) = 9.

Let
Sugg(u) = {a, S, selected}, Sugg(v) = {5 : S, s selected}
Claim 5.4.2.
E(uv)~e [|Sugg(u)| + |Sugg(v)[] = 2
Proof of Claim.
E u,0)~ 5 [|Sugg(u)] + [Sugg(v) Z [(ISugg(w)] + [Sugs(v))

(u v)eE

= S S
E [Sugg(u)| + E [Sugg(v)|

_ ‘%' (Z |Sugg(u)| + > ISugg(v)l)

=2

]

Here we use Corollary 5.28 with the stronger version that the graph is regular.

Decoding Scheme: Vu e U, choose o(u) uniformly from Sugg(u), Vv € V,

choose o(v) uniformly from Sugg(v).

Definition 5.30. Edge (u,v) € E is consistently suggested if 3o € Sugg(u),l €
sugg(v) such that 7., (8) = a.

Fact 5.31. If (u,v) is consistently suggested, then

1
[Sugg(u)| - [Sugg(v)|

Pr,[(u,v) satisfied] >

55

Now consider

E; = {(u,v) € E|(u,v) consisntently suggested}

E
EO = E\E17 Y= %

Lemma 5.32. If (u,v) € Ey, then
coverage of Ty < 1 — 9~ (ISugg(u)[+[Sugg(v)[)

Proof. Note that if [Sugg(u)| = [Sugg(v)| = 1, then coverage of T, < 3,

non-coverage of T,, ,,
= Prz_jo1yr [Va € Sugg(u) : o = 1 v V3 € Sugg(v) : xx5) = 0]
= Pra_qo1x [Va € Sugg(u) : 24 = 1] - Pra_go1yx [V8 € Sugg(v) : (5 = 0]

o—ISugg(w)| . o—Im(Sugg(v))|

> 9~ ([Sugg(u)|+[Sugg(v)[)

O

Definition 5.33. Edge (u,v) is 7-good if min{|Sugg(u)|,|Sugg(v)|} < 7. Then if

(u,v) € By and 7-good, then Pr,[(u, v) satisfied by o] > &

Let

E [|Sugg(u)| + [Sugg(v)|] =7

(u,v)~E1

Then at least edges in F) are (27)-good.

56

Then

(2r)?

N —

E, [Val(o; LC)] = 7 -

For the original Max-coverage problem, it subjects to

Q—Sugg(u,v)l]

+s<7'1+(1—7)l1— E
(u,w)~Eg

IRt

< ol + (1 — fy) [1 — 2_E(u,u)~EO |SUgg(u7U)|:|

o[- 2]

Suffices to prove a claim that

Claim 5.4.3. If vy + (1 —) [1 — 2_21%7] > 2 + ¢, then

4
=
K 1+ln4€>8
and
2
T —
€
So
1 - g2 53>5
/8.—_
TR 32 32

Here we prove that

_63
==/ Gap — LC(K, L)1

Gap - MCI,%-&-&

57

5.5 Multicut

Example 5.34 (Multicut). Input: undirected graph G = (V, E), weights w : £ —
R~ and terminal pairs {(s;, ;) }F_,.

Our goal is to find E' < E to minimize w(E’) =) _p w(e) such that s;, 1
disconnected in (V, E — E'), Vi € [k].

Clearly, k£ = 1 is the min-cut problem.
Theorem 5.35. k = 2 can be solved in polynomial time.

Fact 5.36. k > 3, then k-approximation problem is easy. Actually, we can consider the

union of all min (s;, t;)-cut.

Example 5.37 (Vertex Cover). Input G = (V, E).
Our goal is to select V' < V to minimize |V’| such that Ve € E, e has > 1

endpoints in V.

Those two problems are equivalent. Acutally, OPT(I) = OPT(J) for two cor-

responding instances.

Theorem 5.38. 1.414-approximation for VC is NPH. Assuming UG-Conjecture, (2—¢)-
approximation is hard.
As a result, 1.414-approximation for multicut is NPH. Assuming UGC, no poly-time

constant approximation for multi-cut.

The goal in this lecture is to give a O(log n)-approximation approximation.

5.5.1 Multicut on Trees

Consider LP relaxation:

min Z w(e) - Xe

58

where P(s;,t;) is the unique path on tree.

Rounding Letd(v) = 2 Xe, VU € V.
eeP(rw)
Sample 6 € [0, 3) uniformly.

Say 6 cuts e = (u,v) if [d(u),d(v)) " {6,0 + 5,0 +1,0 +3,---} # .
Let E' = {e € E cut by 6}.
Feasiblity: Consider any (s;,t;). Let u; be the least common ancestor of s;, t;.
Then
d(s;) — d(u;) + d(t;) — d(u;) =1

Assume WLOG d(s;) — d(u;) > 3. Then P(s;,u;) n E' # .

Quality: Consider e = (u,v),

Pr[e cut by] =

IHEw(E’) = ;Pr[e cutby 0] - w(e) < ZQXew(e) = 2LP

5.5.2 Multicut on General Graphs

LP relaxation:

min Z w(e) - xe

ecFE

s.t. Z Xe = 1, VP connect s;, t;
GEP(si,ti)

59

Xe = 0,Vee &

Theorem 5.39. LP poly-time solvable if 3 poly-time “separation oracle”

Definition 5.40. Given {x.}, if {x.} is feasible, then oracle returns "YES". Other-

wise, oracle returns "NO" and any one of the violated constraint.

Theorem 5.41 (Low-Diameter Decomposition, LDD). Given G = (V, E,w), metric
space (V.d), D > 0. 3 partition of V =5, U Sy U - -- U S; such that

* Low Diameter: Vi € [t], diameter of s; < D.

* Low cutting cost:

eeE cut by the partition e=(u,v)eE

If the theorem holds, we can let d(u,v) be the shortest path distance w.r.t.
{xe}, D = 0.99, E' be the set of edges cut by the partition. Here we construct
an O(log n)-approximation algorithm.

Then

O(logn) O(logn)
E) < ——=— e=—H —LP
w(E") >, wle)x D

Proof of Theorem 5.41. Construct partition {S,},cv. Let r = % be the radius.

Algorithm
1. Sample X ~ Unif([Z,r].
2. Uniformly randomly order vertices in V.

3. For each vertex v in the order: assign all unassigned « : d(v,) < z to S,.

60

Claim 5.5.1. For each (u,v) € E, we have

< O(logn) d

. u,v)

Pr[(u, v) cut by partition

Proof. For e = (u,v), denote d(z, e) = min{d(u, z),d(v,2)}, z€ V.

Order vertices in V such that d(z;,e) < d(2g,€) < -+ < d(zp, €).

First time one of u.v is assigned to some S, say z; settles e = (u,v). Further-
more, if exactly one of u, v assigned to S, say z; cuts e.

Pr[e cut by partition] = Z Prle cut by z;]

i=1

Define a; = d(z;, e), b; = max{d(u, z;),d(v, z;)}. Then

Prle cut by z;] < Pr[X € [a;,b;) and z; comes before 21, - - - , z;_; in the order]

= Pr[X € [a;, b;)] - Pr[z; comes before 21, - - - , z;_; in the order]|
bi — a; 1

r/2 i

~X

Therefore,

n

Pr[(u,v) cut by partition| < Z bi—ai
= /2

d(u,v)
/2

< O(logn)

.| =

5.5.3 Max-cut

Example 5.42 (Max-cut). Input: undirected graph G = (V, E), edge weight w :
E - RZO'

61

Our goal is to partition V into (A,B) to maximize

>, w(i,4)1[(i,) cutby (4, B)]

(i.j)eE

IP maximize Z w(t, 7)yij-
(i.j)ek
Subject to
z; € {0,1},Vie V
Yij S T; + 75

Yij <2 —x; —

We can relax to z; € [0,1] to get an LP relaxation. However, LP=1 if z; =

Strengthened LP Add v;; + yjr + yri < 2.

Sherali-Adams It is a way to construct LP relaxation, which try to describe the

joint distribution of k variables.
For variables z;,, I < [n], || < k,o: I — {0, 1}.

Then in this problem, objective is

D% Pr((ig)iscut] Y w00 + 200
(i)eB (i)eE

where z;, > O,Z:p[ﬂ =1
e

Consistency:

Tjous = QTI,J,VI e J,O' 1 — {O, 1}
o’:J\[—{0,1}

Theorem 5.43. On dense graph (e.g. uniformly weighted, |E| > —|V|?)

62

SA(2) + rounding achieves (1 — ¢)-approximation.
Theorem 5.44. Ve > 0, 3 (3 + ¢)-Integrality Gap instance for even SA(n,/100).

So SA process is not good for max-cut.

L — iy . .
IP’ max Z Wi 235 i subject to z; € {£1},Vie V
Relaxation z; ~ 7; € R".

Semi-definite Programming relaxation

subject to |v;]? =1, Vie V.

Fact 5.45. SDP > OPT.

Definition 5.46 (SDP Statndard Form). X € R"*". Maximize (C, X) = Tr(CTX),

X e R™", subject to (4;,X) = b;, Vi € {1,2,--- ,m} and X > 0 positive semi-

definite.

Max-Cut SDP in matrix form Maximize (1(D — A), X) where D is degree

matrix with D;; = > ;a;j and A adjacency matrix a;; = w(i,j)/2, subject to

(e;el , X) =1,YieV.

Separation Oracle Use it to find solution and check it whether it is positive

semi-definite by finding its min eigenvalue.

63

Goemams-Williamson Rounding [1995] Also called "hyperplane rounding".
1. Uniformly sample 7 ~ S™~*

2' Ti = Sgn (<Fu UZ>)

Analysis
E[cut value] = Z w(i, j) - Pr[(i,j) cut]
(i.j)ek
Z s arccos (v;, vj)
(i-f)eE T
ViU
= agw Z Wij - —J>
(i.4)eE
where
L arccos p
agw = mf ”1 ~ (.87856
1 3(1=p)
Integrality Gap 5-Cycle:
Then OPT = 4/5,
1-— 144°
SDP > ———— ~ 0.9045

Gap ratio < ~ 0.885.

0. 9045

Embedded graph G = (V, E,w), consider V < S9! = {||z? = 1}.

Obj(G) = ﬁZ w(&, i) ———2L

Fact 5.47. V embedded graph G, SDP(G) = Obj(G).

Gap Instance G, = (V,E),V =51 E=V x V.

Let w(Z, i) be the probability density of

T~ STy ~ ST (E) < p*

*

Clearly, for this infinite graph, SDP(G) > Obj(G) > =2
For A c S%1,

,U‘Z(A) = Prf’g,\sdfl [fe A@ge A ’<f,y_> < p]

Theorem 5.48. For Ya € [0,1],p € [—1,1], max4: measureof A = a {14p(A)} is achieved
when A is a cap of S°.

Corollary 5.49. max{,«(A)} is achieved when measure of A = 3.

Claim 5.5.2.
arccos p*

OPT(Gy) < +O(—)

™

She

Leave as a homework.

Assume Unique Game Conjecture, oy is the best Integrality Gap.

Algorithmic Gap

65

Example 5.50 (Instance). H; = (V, E,w), V = {+\/>}d

z; with prob X%

Yi =
—x; with prob =2~

denoted as § ~+ 7.

ThenEIi:Eyi:O,Exiyi:<l+p) 1+< *>(—1)=P*-

Fact 5.51.
1—(@pH] 1 1
Obj(H, =——=p*
i) = E_ [.] 5
1 1
SDP > - — -p*
2 27
Claim 5.5.3.
1 1
SDP < — — —p*
9 9F
By the claim,
) arccos (¥, y) _ arccos p* 1
E[rounding] = E < + O(—=
| d (&)~ ™ ™ (\/&)

11
OPT = = — = p*
5 2°

Fourier Analysis of Boolean Function Boolean function: f : {+1}" — R.

Inner product (£, g) = Baw a1 [f(x) - g(2)]

Fourier basis

Vs < [n], xs(x) = Hml

i€s
(Xor Xs) = Bz X2(x) = L.
Vs # 1, <X37Xt> = EXs(f) ’ Xt(f) = EXsAt(f> = H E[xl] = 0.

iesAt
So {x} forms an orthonormal basis.

66

w ~ distribution, ¥ ~ V,

(5.1)

Proposition 5.52 (Fourier expansion). Vf : {+1}" — R,
f = Z f(S) " Xs
sc[n]

~

where f(s) = (f,Xs)-

Theorem 5.53 (Parseval’s). V[: {£1}" — {£1},
Y= (=1
sc[n]

Noise Stability f:{+1}" — {£1}.

NS,(f) = Prag,z[f(Z) = f(9)]

Recall the notation of ~, in (5.1).

67

So

N I I

N = N = N= N N = &

68

5.6 3-Coloring

Example 5.54 (3-Coloring). Input: G = (V, E), color v € V with 3 colors so that

there are no monochromatic edges.

Example 5.55 (Min-3-Coloring). For 3-colorable graph, find a coloring with min

number of colors.
Lemma 5.56. Let § be the degree of G, then coloring G with (§ + 1) colors is easy.

Claim 5.6.1. Coloring G' with n colors is easy.
Widgerson'’s 3 vs. O(,/n) coloring algorithm

Case1 3JveV,deg(v) > 6. Then its neighbors G(N(v)) are 2-colorable.

So color {v} U N(v) with 3 new colors.

Case2 ¢ < 6: color G with (# + 1) colors.

Then total number of colors used

3. 1o+1"

] " O(vn)

Lemma 5.57. Let G be 3-colorable with degree 8, then can efficiently color G with §% -

poly(log n) colors.

If the lemma is true, use the method in case 1, then the cost will be

3-coloring SDP (v;,v;) = —3, V(i,j) € E, |v;|* = 1,Vie V.

69

Extract a large independent set One can efficiently find S < V such that S'is an

IS and

N |

n
Pr[|S| = 5 -poly(logn)] =

Alg

1. Sample 7" = (ry,--- ,rn) ~ N(0,1)™.

2. LetS ={ieV:(v,r)=tnA(v,r) <t,V(i,j) e E}
Let

a(t) = Pre{{v;,7) > 1]

where (i,7) € E.

BIS| = Y a(t) - Pr[(7.#) < t.¥(i,j) € E|(7,5) = t] = Y a(t)(1 - 5 - B(1))

eV eV
where
a(t) = Pr[ry = t] = Phi(t)
1
B(t) = Pr[—5ri + \/7§7°2 > tlry > t] < Pr[\/;rz = gt] = 2(V31)

Claim 5.6.2. Fort > 1, ®(t) = O(+ - e),
Therefore,
at) = et

B(t) < Ze 2 < 2O(a(t)?)

~

E|S|=n- Se 21— 52 O(a(t)?)

~

70

5.7 Sparsest Cut

Example 5.58 (Sparsest Cut). Input: undirected G = (V, E,c),c: E — Ry,.

Undirected demand Gp = (V, E, D), D : F — Ry,.
c(S, S)

) scv.
D(S,5) 7

Goal: minimize sparsity ®(5) =

Uniform Sparsest cut Gp complete graph, D = 1.

(S, S)
) = =
SR
Graphic expansion Define ¢(S) = %, when [S] < 3
we have
1 _«(S,5) ¢(5,5) 2

¢(5) = min {5(5)}

ERE(S
So those problems are related.

5.7.1 O(logn)-approximation for sparsest cut

Nowadays, SDP-based algorithm can achieve O(+/log n)

cut metric Fix (S, 5). Let

%ij = 1[(173) cut by (Sa S)]

= |1[ie S]—1[j € 5]|

{z,;} is a metric.

~

x..
Let z;; = — =, th
et x;; D(S,3) en

1) {Z;;} is also a metric.

71

2) Z ijwz

(i.5)eF

Therefore,

LP relaxation Minimize Z (i, J)xi;.
(i.4)eE
Subject to Z (¢,7)xi; = 1.
(i,5)eF
where x;; > 0, z;; + xji, = T, Vi, 5, k€ V.
Definition 5.59 (Metric Embedding). (V,d) embeds into [,(p > 1) with distortion
1.If3f: V — RX such that

— —

Vi.j € Vo £() = F)lp < d(G) < al) = F()

Lemma 5.60. If we can embed (V,{x;;}) into I, with distortion «, then 3(S,S), s.t.
®(S) < aLP

Proof. Assume f > 0 WLOG.
M =)}
Let i}&?ﬁ]{fk(%)}
"Threshold cut": Syo = {ie V : fr(i) = 6}.
Consider k ~ [K], § ~ Uniform

Pr[(i,) cut | r[6 € [fx(3), fr(5)]]

= |

wl»—

i

E[c(Sko), Skol = . (i, j) - Pr[(i, j) cut]

(i,j€E)
i Z!fk IR GY)

zyeEk 1

= 3V 1) FU)h - eli.)

(3,5)eE

1 o

< KM 2 wic(i, 7)
(i,5)eE

_ 1 .
E[D(Sk0, Sk)| = yavi Z) DD, j)
1

TP

i,j)eF

Then)
E[c(Sk, ko)l <o Z(i,j) zijc(i,)

- < —— = aLLP
E(D(Sk,ea Sk,@)) Z(i,j) xijD(Zvj)

]

Theorem 5.61 (Bourgain’ 1985). Any n-point metric embeds into 1, with distortion
= O(logn).

Theorem 5.62 (LLR 1995). Any n-point metric embeds into l,, p € [1, +oo] with o =

O(logn) and O(log® n) dimensions

Embed tree into [; Any tree T' = (V, E, d) isometrically embeds into /;.

By induction, n = 2, let f(v1) = 0, f(v2) = d(v1,v2).

Induction step: If 7' = 7" U {z}, f embeds T into I, for all v in T", where
w = d(u,v), (u,v) € E.

73

— — —

flo) = (F(0),0), f(z) = (f (), w)

To prove this theorem, we want to reduce to the case of trees. For metric (V, d),

our goal: 3 distribution of trees D such that

E [dr(u,v)] < d(u,v) < a E [dr(u,v)]

T~D T~D

Theorem 5.63. For any (V, d), 3 distribution D over trees, such that o = O(logn), and

1
1) — < E [dr(u,v)] < d(u,v), Yu,ve V.

o T~D

2) d(u,v) < dr(u,v), Yu,v, T € Supp(D)

Theorem 5.64 (Low-Diameter Decomposition). For (V,d), radius r, 3 random parti-

tion {S, }vey such that
1) YveV,ueS,, du,v)<r

2) For each (u,v) such that d(u,v) < r/4,

U

(o) (. B2
- O(lgrB<u,r/4>|>

Pr[(u,v) cut] <

Proof. Generating the Partition
1) Sample X ~ Unif[r/2,r]
2) Randomly order 7 vertices in V/

3) For each v € V in the order m let S, = {u

X and u not yet assigned}.
Definition 5.65. d(z, (u,v)) = min(d(z,u),d(z,v))

74

d(u,v)

Fix (u,v), order vertices in V, (21, - - , z,) such that
d(z1, (u,v)) < d(29, (u,v)) < -+ < d(2zp, (u,v))

z; settles (u,v) if z; is the first partitionin = s.t. ue S, orve S,,.

z; cuts (u, v) if 2; settles (u, v) and exactly one of u,v in S,,.

n

Pr[(u,v) cut] = Z Pr[z; cuts (u,v)]

i—1
Pr[z; cuts (u,v)] < Pr[z; comes before z1,- -+, 2z, in7and X € [d(z;, (u,v)), max(d(z;, u),
1
1. a; < ;:wehaveb; < 7+ 7 = 5.50(5.2) =0

2. a; > r. Then (5.2)=0

3. a; € (r/4,r]. Then (5.2) < %)

So

Pr[z; cuts (u,v)] < Qd(:f’ v) | % 1fa; € (2, 7]

Pr[(u,v) cuts| <

1 d(u,v) 6}
—1fa; € (-,r]] <O ‘In =

Y e (ol < 0T

TreeEmbed (U, 3) where 2° > max, v d(u, v).

1. IF |U| = 1 THEN return the single node in U

2. INVOKE LDD with r = 2°-2, obtained {S, }ucv.

3. FOR each nonemplty S,, invoke TreeEmbed(S,, 5 — 1)

75

4. RETURN a tree that U connects to 7T;,, for each u;
Claim 5.7.1. Yu,v € U, d(u,v) < dr(u,v)
Expansion If G = (V, E) d-regular.
edges(S, S
48) = P [ugs] - 2985

veS,ueN(Q) d- |S|

¢(G) = min_ {o(5)}

Si<|s|<2

Cheager’s Inequality

1
5)\2(LG) < ¢(G) < \/ 2)\2(Lg>
where Laplacian L = I — S A.

Spetral Graph = eRY,

Claim 5.7.2.

1. Lg >0
2. Mpin(Lg) =0

3. Consider G disconnected, then \y(L¢) = 0.

76

7' Lo®
Xo(Lg) = Iar:nn =T
Proof of 1, < ¢(G) .
Consider |S*| < §, ¢(5*) = ¢(G).
Our goal is to construct 7 : Z L 1 and 7 Lo¥ < 29(5%)
& : Tz S .
VieV, let
a i1eS*
xT; =
goi¢S”
where o - |S*| + 3 - (n —|S*]) = 0.
1
Sowelet a = 0= .
IS*I n— |5
1 1 n
5+ —18*) - _
S e) G e T s s

fTLgf = Z (I‘l — l’j)2

(4,5)eE

. 1 I
= [edee(57, 57 <|s*| s s*|>

Then
J_JT Lgf = n

=ro = ledge(S™, 5)"W

< ¢(57)

Proof of 9(G) < +/2X2(Lc).
_TLgl‘
Let 7 | 1 such that 7
X

Our goal is to construct S : |S| < g such that ¢(5) < v/2X,.

=\

Consider #* where (Z"); = max{x;, 0}.

Assume WLOG, [Supp(Z")| < n/2.

77

Claim 5.7.3.

()T Lea™
— X)\2
(17)
Proof. For each i € Supp(z+).
—+ =+ 1 -+
(Lai), = (T = 5 D),
g~
1
< T — a Z.Q?]

Let ¥ = ¥". Assume WLOG, max; y; = 1.

We already have
y" Ly
gty

< Ay and Supp(y) <

|3

Let S; = {i: y? > t}.

Claim 5.7.4. 3t € (0, 1] : ¢(S;) < v/2X9

78

Proof. Choose t uniformly from (0, 1).

E edges(S:, Sy)| = . Pri,j cut]

(i,j)eE
= > w=vl= D) Wity -y -yl
(i,5)eE (4,5)eE
2 Yi + yj Z
(i,5)eE (i,j)eE
dz Yi - _TLG
eV

E[d|S|] =d) Prlie 5] =d)y}

eV eV

E |edges(S;, S;)| 20T Loy
< < A/2)
E[d]S:|] Diev Ui

5.8 Hardness of Approximating MAXE3LIN

Theorem 5.66. Vo > 0, MAXESLIN, 1518 NP-Hard.

We will use "long code" to encode instances of Label-Cover problem.

fu : {il}K - {il}, fu(f) = Ty (u)
Linear Test: A function f : {+1}" — {+1}islinearif f(¥)- f(v) = f(ZY),VZ, ¥ €
{£1}m.
BLR Test: Uniformly Randomly sample 7,y ~ {+1}". Pass if f(Z)f(¥) f(Zy) =

Completeness is trivial.

79

Soundness: If f is §-far from all linear functions, then Pr[Pass| < 1 — 4.

Proof
Prfpass] = 5 + 5 B[/ (7))
-2+ %z@[gﬂsm@) (;fmmw)) “<U>><U<xy>)]
=543 3 FOImio (gxs@n®) (B)
-2+ %zsjf (5)°
So Prlpass] = 4 + 3 s F(S) < 5 + ¢ (Zf) max f(5) = 5 + 5 max /(S).

Theninall1 -0 < 5 + §maxs{f()} e HS*,f(S*) >1—24.

A~

f(5%) <

l\D|>—‘

SB[(P (7] = -

N | —

Pra[f(Z) # xsx(7)] =

Dictatorship Test Our dictator function is { f(Z) = #;}ic(1,2, n}

1. Choose Z,y ~ {+1}™

1 wp.l-c¢
2. Choose ji € {+1}", u; = :
-1 wp.¢e

3. Acceptif f(Z)f(9)f(Zyi) = 1.

Completeness: If f(Z) = z;, then Pr[pass] =1 —«.

80

Soundness:

Prfpass] = L + %f;ygﬁ[f(f)f@fw]
- % + %E (2 f<s>><s<w>> (Z A(T)xT@) (2 A(U)m(a:ym)
—_ % + %S;U F(S)F(T)f(U) (g xSAU@)) (15 XTAU(y)) (Ig xU(m)
-2+ %;RSY”O —2¢)l8

If Pr[pass| = 5 + J, then

26 < Zf £)*! < max{ (S 'S'}Zf

~

~ f(S) =26
Therefore, 35 < [n] s.t. f(S)(1—2e)1 = 26. ie.

5] < 2252~ O(Llog 1)
So we prove that if Pr[pass| = 3 + 0, then can "list decode" f into O(5 log 3)
Now back to the problem. For a label-cover game (K, L), try to reduce to

MaxE3LIN problem.

Proof: f, : {+1}* — {£1}, f, : {£1}F — {x1}.

Verifier:
1. Randomly pick e = (u,v) € E

1 wp.l-c¢
2. Sample T ~ {£1} ¢ ~ {£1}F, b ~ {+1}, i ~ {+1}F, u; =
-1 wp.e

3. Test f.(Z)g(¥)9u((Z o me)yji - b) = b, where

(fo We)i = xﬂe(i)

81

Random bit b is for not to be hacked.

—»

Completeness: If o satisfies all LC' constraints. Let f,(7) = Z5(w), 90(¥) = Yo(w)-

Then

fU(f)gv(g)gv((f © We)?jﬁ' b) = Zo(u) Yo (v)Lre(o(v))Yo(v) o (v) * b

= Ho(v)

Therefore, Pr[accept] = 1 — ¢.

b

Soundness: If Pr[accept| > 3 + §, then we prove that 3 LC solution value > 1.

Fix e = (u,v) € E,

Pr[e passes test]

% %bf (Z90()g0((F o 7.)ijii - b))
— S+ oE [(qu >(ng)(%] xowe>-g-ﬁ-b>>-b]
-+ %2 3.(T)9.(U) E (xs(@)xr ()x0((F 0) ib))
Sty 2 BSRTIW0) E ls@xe((Fom)) -b]
S, T,U ’
xr (¥)xuv (9] E [xw ()]
% %SZT@<S>§U(T>2(1—25)' 'E [xs(@)xu((Fom) b) - b]
ot %;,fu(sm (T)*(1 = 22)"V B [xs(@)xr(¥ o me) - 0117
+ %;Tﬁwmv(tr)?(l —22)"11{|] odd] - E [xs(&)xr (7 o m.)]
“+ %;me(:r)z(l —29)T11[|7) oddl] - E H H<>]
o+ %;Tms)avmzu —20)"11{|T] oddl] - E 1;] :ci“es””e”“”]

82

Y

(%)

Let m944(T) = {i € [K] : |7, (i) n T| odd}. Then

(x) #0 = Vie [K],[ie S]+ |7, (i) n T| even

= W?dd(T) =S.

Therefore,

Z fu (2994 (T)) G, (T)?(1 — 2¢)/
|\T|:0dd

N | —
|

Prle pass| =

If 2 + v < Pr[pass], then (xx) > 2.

Since Y §,(T)* = 1,
T

27 < B _[117] 0dd)Fu(rt)(1 - 20)7]

T~3
= Prrg [1[IT| odd] f,(x24) (1 — 26)"1 > v] > ~

e

Call T good if T satisties the above condition.

If T is good, we have

1) |T| odd, then 7°94(T) = &, V.

2) (1-2¢)"1 >~ =|T| <O(Llogl), denote B = O(tlog?)
3) Fom () = 7

Definition 5.67. Vu € U, Sugg(u) = {j € T|3S : f.(S)? = 72 |U| < B}.
Then [Sugg(u)| < O(:5 - L -log 3).

Sample Sugg(v) = T ~ g2.

83

Decoding o(u) ~ Unif(Sugg(u)), o(v) ~ Unif(Sugg(v)).

Pr[o satisfies e = (u,v)] = Pr[o(u) = m.(0(v))]

= Pro=m(p)]
T~gU7B~T
a~Sugg(u)

= Pr[T good] - BPT’ [a = 7(5),T good|

~T
a~Sugg(u)
1 1
7B |Sugs(u)
1
> Q(y°e’ log™)
¥

1
E[v(e)] = 6 = Pr(e satisfies 7.) > Q(5°c?/log” 5) _

e e

Here we finally prove that E3LIN;_. 1/5,5 is NP-Hard.

Corollary 5.68. Ve > 0, Max3SAT is NP-Hard.

1—5,%4—5

Proof. Reduce the instance of 3LIN to 3SAT as follows:

3LIN(I) — 3SAT(J)
(
J_,’Z' Vv J_Zj Vv i’k
x; Vv T; VvV Tk
$i+l’j+l’k50—><

Ti VIV I

TiVITiVEI
L1 J k

84

i
Ty vV I; VT

xivfjv:ik
$i+$j+$k51—><

ii‘i\/l'j\/li'k

kfi\/fj\/xk

Then OPT(I) > 1—e= OPT(J) > 1 —ce.
OPT(I) < 1/2 + = OPT(J) < 7/8 + ¢ 0

5.9 Hardness of Max-Cut

1
Corollary 5.69. Ve > 0, (1—5 + 5) -approximation Max-Cut is NP-Hard.

Remark 5.70. Assume Unique Games Conjecture, agy + c-approximation Max-

Cut ¢ P.

Definition 5.71. Unique Label Cover Game is the label cover game (K, K) that

Ty 1S @ permutation over [K].
Fact 5.72. ULC e P
Conjecture 5.73. V6 > 0, 3K > 0 such that ULCy_55 ¢ P

Proof of Remark 5.70.

Cut Dictatorship Test: f : {+1}" — {+1}.
Cut test: f(Z) # f(¥).

Parameter: p.

1. Uniformly sample & ~ {£1}"

85

2. Sample ji € {+1}"

i = (E p; = p)

-1 wp. %

— 5 s 2R (Z xS<x>xT<x>) (
- - %2 f(s)%0l%

1 1
= 5 - ESp(f)

We investigate some major functions:

1. Dictators: f(Z) = z;

2. Constant functions: f =0, f = 1.

Pr[f pass] =0

3. Parity functions: f = xs(Z).

1 1
Pr[f pass] = 5 §,O|S|

86

4. Majority function: f(7) = sgn (L\/{%)

1t +Tn 1

= N,)
s Pl
Prlfpasses] ~ Pr[sen(gr) # sgu(g)] = ="
9 L p
~N(0,)
92 p 1

5. Linear Threshold function (LFT)
f(Z) = sgn(a'7), |l = 1

Then Majority function is a special case @ = (1/+/n, -+ ,1/y/n) of LFT.
Dictator function is also a special case @ = (0,0,---,0,1,0---,0) of LFT.

Theorem 5.74 (High-Dim Berry Esseen). Let 171, cee Y, be independent random vari-
ables in R, where EY; = 0, ZVal[Yi] = I;LetY =Y, + -+ Y,. For all measurable

=1
convex sets A — R%, we have

< (42d"* +16) Y E[Vi3

i=1

Lemma 5.75. If f = sgn(a@’ 7), |a|2 = 1. Then

O(1
Pr[f passes| = TR () max |a;|
™ (L=p?)? 7
. . . 1—p
Completeness: If f is a dictator function, then Pr[pass| = —
arccos p

Soundness: f far from dictator, then Pr[textpass] ~ < Pr[pass] >

EE2L + ¢, then f has a few "influential dimensions" which can be decoded for

87

ULC.

Definition 5.76 (Influence). Given f : {£1}" — {£1}. For any i € [n], define

Inf;(f) = Pr [f(Z)# [(_®Z]

8
i
J’_
=
3

—_

Kh

%l

_ % ~5E (Z A(S)Xs(f)> <Z A(T)XT@@Z))
= 5= 3 D FE D s (e ()
1 1 ~ 1 n
— — =) FS) -2 Y f(9)?
2 2 €S () 2 ; ()
=2 f(s)?

s
m
0

Example 5.77. Let f be the majority function over n = 2k + 1 variables. Then

2k
2k)! v/ 27 (2k) vArk
Inf;(f) = Pr [maj(Z) # maj(i®)] = Ce) _ _(2k) ~ YT (62) Ll
F~{£1}n 22k 22k(E1)2 22k (27k) (£) 21k
Theorem 5.78 (Majoiry is Stablest). Let p € (—1,0), ¢ > 0. Then 37 = 7(p,e) > 0
such that Vf : {+1} — {1}, if Inf;(f) < 7, Vi, then
2 arccos p
S,(f) > 1 - 2CBP
T
Therefore,
- o 1 arccos p
Pf(7) # f@A)] = 5 — 58(f) < Tl 42
O
Theorem 5.79. Let p € (—1,0), ¢ > 0. There exists 7 = 7(p,e) > 0,C = C(p,e) > 0

88

such that f : {£1}" — [—1, 1] with max{Inf\CC(f)} 7, we have

2 arccos
S,(f) > 1 - 2282
T
Definition 5.80. Inf,;< C(F) = F(S)?
S31,|5|<C
Claim 5.9.1.
21nf<0f_ MJSRsi< Y f(8) <
s|s|<c S
<c c
Therefore, (59(f) > 7} < =.
T
i.e. If Pr[f pass dict test] > kel then 1< [{i:InfS9f) > 7} < g
T T

5.9.1 The Entire Proof

Unique Label Cover Game: Constraint graph G = (U, V, E) left-regular. Alpha

bet ¥ = [K]. Constraints Ve = (u,v) € E,m. : [K] < [K]. Prover: provide
o0:U vV — [K]. Verifier: Sample (u,v) ~ E, test my,(c(v)) = o(u).

Unique Games Conjecture states that V6 > 0, 3K = K(J) s.t.
Gap — ULC(K)1_55 ¢ P.

Reduction to MaxCut:

1. Sample u ~ U,v,w ~ N(u).
2. Sample & ~ {+1}", 4 ~, 2.
3. Test f,(x 0 my) # fuw(y © Tuw), here f, is the "long code" encoding.

Completeness: If o : U u V' — [K] passes ULC test with probability 1 — 6.

89

Let fv(f) = ma(v).

Pr[{f,} passcuttest| = E Pr[f,(zomy) # fu(y o Tuw)]

u,V,W T,Y

- ’lLIE:w .Z‘E;: I:fﬂ'uv(a'(v)) ?é gﬂ1z1y(0(w))]
s 1—p
> E Pr[when o satisfies 7, Ty, | - 5
u,v,w T,y
1—
1—26)- 1P

=
2

—~

22_5

2

arccos
p+5,thenﬂa U v

Soundness: Goal: If (x) = Pr[{f,} pass cut test] >

V' — [K] satisfying > ¢ frac of ULC edges.

Pr{forupasses| = E Pr|Z,y ~, Z][fo(Z 0 Tuw) # fu(¥ 0 Tyw)]

v,w~N(u)
I 1 " "
= UI[%; 575~ E ﬂ[fV(x 0 Tuv) * fu (¥ © Tuw)]
]- 1 — —
= ____)_E E fv(xoﬂuv) E fw(yoﬂ-uw) (**)
2 2 Z,y~pZ \v~N(u) w~N (u)

Definition 5.81.

Then
1

()= 53 E (9.0, = § ~ 35,(0

T, Y~ pT

arccos € .
P 4 ¢ = 3% fraction of u such that Prlupass] > #2224 2,
m

for which we call "good".

Therefore, (x) >

Then for "good u", S,(g,) < 1 — 2882 _ ¢ 0 Sugg(u) = {i : Inf:%(g,) > 7
& p pe

with 1 < [Sugg(u)| < €.

90

—

gu(?) = E F(S) - xs(T ©)

v~ N () g

= Z f(S) I}@ X (5) (T)
Scin] v~N(w)

- ¥ (B fmis)) w@
Scn] N

A~

Therefore, §,(S) = E f(m,;(S)). So

v~N(u) “

T < Inffc(gu) = Z gu(s)2
S3i,|S|<C
R 2
- 3 (L, Awon)
Ssirfs|<c NN ®)
- Y E Q)
Ssis|<c UV ®)
= E £0(9)?
v~N (u) Z)

Samii (i),8|<C

v~N (u)

So at least % frac of v € N(u) such that Inf<9 © (fu) > 7/2, which we call "good"

—1
Tyv

Let Sugg(v) = {i : Infs°(f,) > 7/2}. Then for those "good v" |Sugg(v)| < 2C/7

2
g T T ET

P satisfiesp| > = - — - — = Ny
U~St7:gg e]:EEE[U p] 2 2 920C]C'

510 Investigation on ULC

Definition 5.82 (Constraint Satisfaction Problem(CSP)). Alphabet: [K], Arity: r,
Predicate: {P c [K]"}.

Max-cut is the case of K = 2,7 = 2, P = {(«a,), # [3}.
Max-3LIn is the case of k = 2,7 = 3, P canbe {(«, 5,7) : a® @D~y =0,1}.

91

Index

a-approximation algorithm, 34

3-CNF, 34
arborescence, 13
Bellman Equation, 15

c vs. s Decision Problem, 35
CNEF, 34
cut, 10

cutset, 10

fundamental cut, 10

Fundamental cycle, 10

gap ratio, 42

hyperparameter, 16

Integrality Gap (IG) instance, 42
Laplacian, 76

Markov Inquality, 40

NP-complete, 47
NP-hard, 47

polynomial reduction, 47

spanning tree, 10

st-flow, 21

Unique Label Cover Game, 85

92

Important Theorems

22 Theorem 7
2.6 Theorem (Invariant) 8
2.10 Theorem (Cayley Theorem) 10
211 Theorem o i i i 11
218 Theorem 14
42 Theorem 22
44 Theorem 24
411 Theorem (Hall’'s Theorem) 27
414 Theorem (Menger’s Theorem) 28
425 Theorem 33
52 Theorem 35
5.11 Theorem (Markov Inequality) 40
512 Theorem 41
5.13 Theorem (Chernoff Bound) 44
5.14 Theorem (Cock-Levin) 47
5.15 Theorem (Max-Coverage) 48
5.16 Theorem (PCPtheorem) 49
5.18 Theorem (PCP theorem) 49
5.21 Theorem (PCPtheorem) 50
522 Proposition. 51
523 Theorem 52
526 Theorem (not quitetrue) 53
527 Theorem e 54
529 Theorem 54
535 Theorem 58

5.38
5.39
541
5.43
5.44
5.48
5.52
5.53
5.61
5.62
5.63
5.64
5.66
574
5.78
5.79

Theorem 58
Theorem 60
Theorem (Low-Diameter Decomposition, LDD) 60
Theorem 62
Theorem 63
Theorem 65
Proposition (Fourier expansion) 67
Theorem (Parseval’s) 67
Theorem (Bourgain”1985) 73
Theorem (LLR1995) 73
Theorem 74
Theorem (Low-Diameter Decomposition) 74
Theorem 79
Theorem (High-Dim Berry Esseen) 87
Theorem (Majoiry is Stablest) 88
Theorem 88

Important Examples

1.1
1.7
2.1
2.3
2.5
2.8
2.16
3.1

Example (Task Assignment) 4
Example (Task machine) 5
Example (Interval Scheduling) 6
Example (Interval Partitioning) 7
Example (Single-Source Shortest Path(SSSP)) 8
Example (Minimum Spanning Tree (MST)) 10
Example (Minimum Arborescence) 13
Example (Weighted Interval Scheduling) 15

94

3.2
3.3
3.4
3.6
3.7
3.8
4.1
4.10
4.13
4.15
4.17
4.18
4.20
4.22
4.24
51
55
5.10
5.34
5.37
5.42
5.50
5.54
5.55
5.58
5.77

Example (LeastSquare) 16

Example (Segmented Least Square) 16
Example (Knapsack Problem) 16
Example (RNA Secondary Structure) 19
Example 19
Example (Matrix Multiplication) 21
Example 21
Example (Bipartite Matching) 27
Example (Network Connectivity) 28
Example 28
Example (Survey Design) 29
Example (Airline Scheduling) 30
Example (Image Segmentation) 30
Example (Project Selection) 31
Example 32
Example 3-CNF) 34
Example (Set-Cover) 36
Example (Weighted Min Set-cover) 38
Example (Multicut) o 58
Example (Vertex Cover) 58
Example (Max-cut) 61
Example (Instance) L. 65
Example 3-Coloring) 69
Example (Min-3-Coloring) 69
Example (SparsestCut) 71
Example 88

95

	Introduction
	Models of Computation: Turing Machines
	Models of Computation: word RAM
	Polynomial Running Time
	Notation
	Tentative Syllabus

	Greedy Algorithms
	Interval Scheduling
	Interval Partitioning
	Single-Source Shortest Path
	Minimum Spanning Tree
	Minimum Arborescence

	Dynamic Programming
	Weighted Interval Scheduling
	Segmented Least Square
	Knapsack Problem
	RNA Secondary Structure
	Sequence Alignment(Edit Distance)
	Matrix Multiplication

	Flow Network
	Definition
	Appllication

	Introduction to Approximation Algorithm
	Set-Cover
	Weighted Min Set-cover and Randomized Rounding
	Hardness of Approximation
	Label-Cover Games
	Multicut
	3-Coloring
	Sparsest Cut
	Hardness of Approximating MAXE3LIN
	Hardness of Max-Cut
	Investigation on ULC

	Index

