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1 Smooth Manifold

Definition 1.1 (Topological manifold). A space M is called a topological manifold
if

1. locally Euclidean
2. Hausdorff

3. second countable

Definition 1.2 (Smooth Manifold). A smooth structure is given by an equivalence
class of smooth atlas {(U,, ©a)} 5.t. Yas @ Pa(Ua N Us) — @©3(U, n Ug) is smooth
Va, . M = uU,.

A smooth manifold is a topological manifold with a smooth structure.

Define when a continuous map f : M; — M is smooth if V(Uy, ¢1) € Ay, (Us, p2) €

Az, wehave g0 foprt: (U 0 Uy) — @o(Uy N Uy) is smooth.

Definition 1.3. Given (M, A,), (M2, As). A homeomorphism f : M; — M, is
called a diffeomorphism if f, f~! is smooth.

In this case we say (M;, A1), (Ms, As) are diffeomorphism.

Theorem 1.4 (Kervaire). 3 1 10-dimensional topological manifold without smooth man-

ifold.

Theorem 1.5 (Milnor). 3 a smooth manifold M s.t. M = S but not in diffeomorphism

meaning.

Theorem 1.6 (Kervaire-Milnor). 3 28 smooth structures (up to orientation preserving

diffeomorphism) on S”

Theorem 1.7 (Morse-Birg). On S”. If n < 3, then any n-dimensional topological man-

ifold M has a unique smooth structure up to diffeomorphism.
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Theorem 1.8 (Stallings). If n # 4, then 3 a unique smooth structure on R™ up to

diffeomorphism.

Theorem 1.9 (Donaldson-Freedom-Gompf-Faubes). 3 uncountable smooth struc-

tures on R* up to diffeomorphism.

Definition 1.10 (topological manifold with boundary). A space M is called a topo-

logical manifold with boundary if
1. M is Hausdorff
2. M is second countable

3. Vp e M, 3 aneighbourhood U of p and a homeomorphism ¢ : U — V where

V is open in H"
We say a manifold M is closed if M is compact and 0M is empty.

Our motivation for studying manifold is to study the space of solution for

equations.

Question 1. Given f : R®* — R smooth, ¢ € R", when is f(¢q) is a smooth

manifold?

For f : U — R" smooth, U open in R™, the differential of f at p € U denoted as
df(p).

Definition 1.11. We say p € U is a regular point of f if df(p) is surjective. Other-
wise we say p € U is a critical point.

A point g € R" is called a regular value of f if Vp € f~!(q), p is a regular point of
f-

A point ¢ € R" is called a critical value of f if Vp € f~!(q), p is a critical point of f.



Theorem 1.12 (Implicit function theorem). If p € U is a reqular point of f : U — R™.

Then there exists
* An open neighbourhood V of p in U
* An open subset V' of R™

o A diffeomorphism ¢ : V' — V' such that P o p = f where P is the projection from
R™ to R™.

In other words, near a regular point, we can do local coordinate change to turn f into the

projection.

Remark 1.13. Inverse function theorem and Implicit function theorem gives a
way to find the related from "a point" to "a beibourhood"!

In particular, we have a homeomorphism

~

) nV - {(z1, - am) € VI|(21,- - n) = f()}

restriction of ¢

ie. ifweset M = f~'(f(p)), then (M NV, p,) is a chart that contains p.
Corollary 1.14. If q is a regular value of f : U — R" then f~(q) is a smooth manifold.
Remark 1.15. It suffices to show that the corresponding charts are compatible.

Theorem 1.16 (Sard). If f : U — R" is a smooth map, then the set of critical values of

f has measure 0.
Remark 1.17. For a "generic" g, f~'(¢) is a manifold of dimension m — n.

Corollary 1.18. If f : U — R" is smooth and m < n then f(U) has measure 0.



1.1 Lie Groups and Homogeneous Spaces

Definition 1.19. We say G is a Lie group if it is a topological group with a smooth
structure such that the multiplication map - : G x ¢ — G and the inverse map

G~ (G is smooth.

Example 1.20. GL(n,R) = {n x n matrices with non-zero determinant} < R™*"
O(n) = {Ae GL(n,R)|AAT = I}

SO(n) = {AeO(n)|det A = 1}

Uln) = {Ae GL(n,C)|AA" = I}

SU(n) = {AeU(n)|det A = 1}

Exercise 1.21.

o(1) = §? SO(1) = « (1.1)
SO(2) = S* SO(3) = RP? (1.2)
SU(2) = S? U(n) = S' x SU(n) (1.3)

The last one is a diffeomorphism but do not preserve the multiplicatioin, i.e. not

an isomorphism of Lie group.

Theorem 1.22 (Carton). Let H be a closed subgroup of Lie group G. Then H is a Lie
group. More precisely, H is topological manifold, carries a canonical smooth structure

that makes the multiplication and inverse smooth. Also, G/H is a smooth manifold

Definition 1.23. Let M be a smooth manifold. We say )M is a homogeneous space

if 3 a Lie group G with a smooth transitive action p : G x M — M.

Definition 1.24. For M be a homogeneous space. The isotropy group of x € M is
defined as

Iso(z) = {g € Glgz = =}

7



closed subgroup of ¢
Given any z,2" € M, Iso(x) = Iso(x’) because the group action is transitive.

Hence, we have a well-defined map

p: G/Iso(x) — M (14)
g =gz (1.5)
Theorem 1.25. p is always a diffeomorphism.
Therefore, we have this proposition

Proposition 1.26. M is a homogeneous space < M = G/H for some closed subgroup

H.

Example 1.27. If M = S™,let G = SO(n + 1).

Then Iso(1,0,---,0) = SO(n).

So S™ = SO(n +1)/(S0(n)).

Similarly, we can prove RP" =~ SO(n + 1)/(O(n)), CP" = SO(n + 1)/(U(n))

The isotropy k dimensional linear subspaces of R” can be O(k) x O(n — k) if G =
O(n)

A connected closed surface is a homogeneous space if and only if it is diffeo-

morphic to RP?, S2, 7% and Klein bottle.
Theorem 1.28 (Whithead). Any smooth manifold has a triangulation.
Theorem 1.29 (Poincare-Hopf). G is compact Lie group = x(G) = 0.

Theorem 1.30 (Mostow?2005). M is a compact homogeneous space = x (M) = 0.



1.2 Bump Function and Partition of Unity

Theorem 1.31 (Urysohn smooth version). Given M, closed disjoint A, B, 3 smooth
f:M—[0,1] st fla=0,f|lp=1

Theorem 1.32 (Tietze). Given M, closed A, smooth f : A — R™, there exists smooth
FiM >R st fla=f

To prove these and much more result we need partition of unity theorem.

First we define bump function.

Lemma 1.33. Let U be a neighbourhood of p € M. Then 3 smooth o : M — [0,1] s.t.
1. 0 = 1nearp
2. Suppo c U

Such o is called a bump function at p, supported in U.

Definition 1.34. An open cover of a space X is locally finite if any point has a

neighbourhood that intersects only finite many open sets of this cover.

Proposition 1.35. Given compact K < U and open neighbourhood U of K, 3 a smooth
g: M —[0,+0) s.t. g|lx =1and Suppg < U.

Definition 1.36. An exhaust of a space X is a sequence of open sets {U;} s.t.

2. U is compact and contained in U4
Theorem 1.37. Any topological manifold has an exhaust.

Given two open covers U, V, we say V is a refinement of / if VU, e U,V e V

S.t. Vg C Ua.



We say a space X is paracompact if any open cover has a locally finite refine-
ment.

Actually, any metric space is paracompact.(The proof is hard)

Proposition 1.38. Let U = {U,} be an open cover of a topological manifold M. Then

there exists countable open covers W = {W;}, V = {V;} s.t.
e Forany i, V; is compact and V; = W,
* Wis locally finite.
* Wis a refinement of U.
As a corollary, we have any topological manifold is paracompact.

Definition 1.39. Given open cover U/ of a smooth M, a partition of unity subordi-

nate to U is a collection of smooth functions {p, : M — [0, 1]}aca .t

1. Vp e M, 3 only finitely many a € A s.t. p € Supp p,

2, ;A pa(p) =1

3. Supp po = U,

Theorem 1.40 (Existence of P.O.U). For any open cover U of smooth M, 3 a P.O.U

subordinate to U

Theorem 1.41 (Whitney approximation theorem). Given any smooth M, any closed
A and any continuous f : M — R, § : M — (0,+400). Suppose f is smooth on A. Then
dg : M — R smooth s.t.

® gla=fla

* Ype M, |g(p) — f(p)| < d(p)
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2 Tangent space and tangent vectors

2.1 Tangent Space

Given p € M, consider the set C;*(M) = {smooth function V' — R}/. where
fi ~ foif and only if 3 neighbourhood U of p, fi|v = fa|u.

C,°(M) is the space of genus of smooth function near p.

A partial-derivative of p is a R-linear map D : C;°(M) — R that satisfies the

Leibniz rule:

D(fg) = D(f)g(p) + f(p)D(g)

Definition 2.1. A tangent vector of M at p is a partial-derivative at p.
Define the tangent space 7,M/ = {all partial-derivative at p }, which is a R-
vector space.

0
(93:1-

Proposition 2.2. For M = U < R" open. We have { —} is a basis for T,,U.

Proposition 2.3.

0 oyt 0
‘p: Z / '_-|p

oz 52 ort oyt
Now we try to define differential of a smooth map.
M, N smooth manifolds, C*(N, M) = {smooth F': N — M}.
Given F' € C*(N, M), I induces I'* : Cf; (M) — C*(N), f— foF.
By taking dual, we get
Fy: T,N — TppyM

we also write F as F} , call it the differential of I at p.

where
0 oFF 0
F* D == — . T~
(axz ’P) - 81'7“ ('/ka ’F(P)
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Proposition 2.4. The differential satisfies the composition law.

(GoF)y=GyoF,: T,N — TaopmW

Definition 2.5. A smooth curve is a smooth map v : (a,b) — M. We say ~ starts

at p if 7(0) = p. We define the velocity of v at (0) as 7. (Zo) € Ty0) M

Take charts (U, z', - - - ,2") about p, let 7' = z% 0 7.

We say 7, 0 are tangent to each other at p if (v")'(0) = (§°)'(0).

Now we can define
(TyM) curve := {smooth curves v starting atp }/.

where v ~ § iff they are tangent to each other.

Then these definition is more geometric.

Lemma 2.6. Given F'€ C*(M, M), p € N, the diagram commutes:

v e (TyN)ewrve ———— T,N

| !

Foye (TrepM)erve — TrpM

2.2 Tangent Bundle

Let (M, A) be a smooth manifold, TM = U T,M, called the tangent bundle

peM

Now we want to define a natural topology and smooth structure on 7'M . Take

any chart (U, p) = (U, 2", -+ ,2") € A.

We have a map

$:TU S p(U) x R c R* x R®

12



XeT,U— ((p(p),Xl,--- , X™)

where X = )} X'-0.

pe

Then pull back standard topology on ¢(U) x R" to a topology on T'U.
B={3"(V)l(¢,U) € A,V openin o(U) x R" }

There is some fact in topology:

e Bis abasis

* B generates a Hausdorff, second countable topology on T'M.

~

So T'M is a topological manifold covered by charts A = {(TU, )|(U, ¢) € A}.

Given (TU, ), (TV, ) € A, the transition function is

o(U A V) x R 2275 (7 A V) x R 1)
(P, ) = (o™, J(Yop™)(X)) (2.2)

So A is a smooth atlas on T'M, making 7'M into a smooth manifold.

Definition 2.7 (vector bundle). Given a continuous map f : E — B, we say f is
a n-dimensional vector bundle if: 3 an open cover U = {U, }ser of B and homeo-

morphisms {f ' (U,) => U, x R} s.t.
FUU) 2= Uy xR?

J l f commutes for a € I.
projection
Ua

* VpeU, nUg the map

R" = {p} x R* £5 f~(p) 25 {p} x R" = R"

13



is linear.
Call f~!(p) the fiber over p.

Proposition 2.8. Given vector bundle f : E — B, the fiber f~(p) has a structure of a

vector space.
Example 2.9 (Product bundle). £ = R" x B

Example 2.10 (Tautological bundle).
B = CP" = {1-dim complex subspace of C""'}, E = {(L,v) € CP" x C"'}

And we map (L,v) — L

Given vector bundles B, ™ By, B, =2 B,, a bundle map consists of (f, f) s.t.
P

E1 % E2
o lﬂ lﬂ commutes.
f

B, —— By
o Wbe B, f:m'(b) — w5 (f(b)) is linear.
If ]?, [ are diffeomorphisms, then we call (]?, f) an isomorphism of vector bundle.

An isomorphism to a product bundle is called a trivialization. An bundle is

trivial if it has a trivialization.

Example 2.11. T'S*, T'S? are both trivial.
St~ 0(1) = S0(2),5% ~SU(2)

Theorem 2.12. If G is a Lie group, then T'G is trivial.

Proof. For (z',2%,--- ,a™) is a basis of T,G The bundle isomorphism is

G xR 5 TG, (g,c' ") = (g, (Ig)s > o))

)
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where

l,: G — G, h— gh

is a diffeomorphism. Hence, it induces the isomorphism (/).

Proposition 2.13 (Adams, 1960s). T'S™ is trivial if and only if n = 0,1,3, 7.
Proposition 2.14.
1. Givenany F e C*(M,N), F, : TM — TN is a bundle map.

2. T'S™ is isomorphic to the following bundle:

B =s" E = {(p,v) € S" x R""|v 1 p}

Definition 2.15 (smooth section). Given a smooth vector bundle = : ¥ — B, a
smooth section is a smoothmap S : B - E s.t. moS = id,.

so: B — E.b~— 0e0-vectorin 7 'b.

2.3 Vector Field, Curves and Flows

Definition 2.16. A (tangent) vector field is a smooth section of T'M. ie. a

smooth map M 5 TM st X(p)e T,MNpe M

Given any f : R" — R, define the gradient vector field

B of &

1<isn

oft  of?

17. X = 1 1 27,2 : : 3 3
Example 2.1 frox* + f?0x” is a gradient field if and only if 32 = Al

15



Theorem 2.18 (Poincare-Hopf). For closed M, M has a nowhere vanishing vector field
if and only if x(M) = 0.

So S™ has a nowhere vanishing vector field if and only if n is odd.
Theorem 2.19 (MaoQiu). S? has no no-where vanishing vector field.

So We cannot smooth out all the hairs on a ball.

Given a vector field X = {X,},en, a curve v : (a,b) — M is called an integral
curve of X if v'(t) = X, ), Vt € (a,b), where 7/(t) = 7*(%) e T,wM.

We say ~ is maximal if the domain cannot be extended to a larger interval.

Denote the set of all smooth vector fields on M by TM

Recall that v is maximal if it’'s domain can not be extended to a large open
interval.

In a local chart (U, zt,--- ,2"), X|y = Zn: a'0x’. Then 7 is an integral curve if
and only if (') (t) = a'(y(t)), V1 <i < n, Vizzhlere yi=xtov:(a,b) —> R.

And in this case the initial value condition: v(0) = p < ~7*(0) = p'.

Locally, solving integral curve starting at p is equivalent to solving ODE with

initial value p', - - - , p". By existence and uniqueness of solutions of ODE, we have

Theorem 2.20 (Fundamental theorem of integral curve). Let X € TM, p € M, then:

(1) (Uniqueness) Given any two integral curves 1, s : (a,b) — M, then we have:
711(c) = y2(c) for some c € (a,b) = 11 = 72

(2) there exists a unique max integral curve v : (a(p),b(p)) — M starting at p.

(3) (integral curve smoothly depend on initial values) 3 Nbh U of p, € > 0, and smooth
p:(—e,e)xU—->M st.VgeU, p.:=p(—,q): (—e,e) = M is an integral

16



curve starting at q.
we call such ¢ a local flow generated by X.

Definition 2.21. Given X € TM, a global flow generated by X is a smooth map
0 :Rx M — M st Yqge M, p, = ¢(—,q) is the maximal integral curve of X
starting at q.

0%

= E(s,p) = Xo(sp), Vs €R,pe M and ¢(0,p) = p,Vpe M.

If such global flow exists, then we say X is complete.
Example 2.22.
e X = z-0r € TR is complete, where global flow ¢ : Rx M — M, p(t,p) = p-€'.

e X = 2?0z is not complete. Max integral curve starting at 1 is given by

1
V(t) = 1—tat € (—OO, 1) # R.

Given X € TM, we define SuppX= {pe M : X, # 0}.
Theorem 2.23. If a vector field X is compactly supported, then X is complete.
Corollary 2.24. Any vector field on closed manifold is complete.

Lemma 2.25 (Escaping lemma). Suppose v : (a,b) — M is a max integral curve, with

(a,b) # R. Then } compact K = M s.t. v(a,b) ¢ K

Proof. Otherwise, suppose v(a,b) = K. WLOG, we may assume b < +.

Take (t;) — b from left. Then v(t;) € K. After passing to subsequence, we may
assume (y(t;)) — pe K.

Then 3 U Nbh of p, local flow ¢ : (—¢,¢) x U — M. Take n large enough s.t.
b—t, <¢e,v(t,) € U. Theny(—+t,) : (a—t,, b—t,) > M, p(—,v(t,)) : (—e,e) > M

are both integral curves for X starting at v(¢,). By uniqueness, they coincide.

17



(1)t € (a,b)
Let? : (a,t, +¢) — M be defined by 7(t) =

ot —tn,Y(tn)), t € [byty +€)
Then 4 is an integral curve with larger domain, then ~ contradiction with the

maxity of . O

Proof of 2.23. Take any max integral curve v : (a,b) — M. Suppose (a,b) # R.
Then X ;) # 0, Vs. Otherwise, the constant map R — M,t — ~(s) is an integral
curve with lager domain.

So Vs, v(s) € SuppX = 7(a,b) = SuppX which is compact = (a,b) = R by the

lemma. This causes contradiction! O

A smooth ¢ : R x M — M is called an one-parameter transformation group
if
(1) @0 :=(0,—) = idy
(2) @50 = psiy forall s,t € R. In particular, ;' = ¢_,.

Theorem 2.26. ¢ € C*(R x M, M), then ¢ is an one-parameter transformation group

if and only if ¢ is the global flow generated by some X € TM

Lemma 2.27 (Translation lemma). If v : (a,b) — M is an integral curve for some

X e TM, thenVs e R, y(— +s) : (a — s,b — s) — M is also an integral curve for X.
Proof. Lett = ~(— +s). Then //(t) = Xy14s) = Xin) O
Lemma 2.28. Let ¢ : (—¢,e) x U — M be a local flow for some X € TM. Then
©s 0 r(p) = Ys4r(p) provided that s,t,s +t € (—¢,¢),p, ¢r(p) € U.

Proof. 7, = ¢(—,p) is an integral curve for X.
= v,(— + s) is an integral curve for X starting at 7,(s) = ¢,(p). But v, () is

also an integral curve starting at ¢ (p). Thus v, ) = Vp(— + 5) = @r 0 ps(p) =

Vr4s (p) D

18



Lemma 2.29. Let ¢ : (—¢,e) x U — M be a local flow for some X € TM. Then

s (Xp) = Xo.p) € Ty )M i.e. any vector field is invariant under its flow.

Proof. Take f e C%

©(p)

(M).

@s,*(Xp)(f) = Xp(f © @5)

_ %( £ 0 0s(0e())leo

Lt o ool

T
= Xsas(p)(f )
]
Proof of 2.26. "<" is because the lemma ¢, o ¢, = Y,
0
"="Let X = {X,} where X, = a—f|(o,p).
Leave it as an exercise. O]

Time dependent vector field is a smoothmap X : R x M — TM s.t. X €
T,M.

A smooth curve y(a,b) — M is the integral curve for X if v'(t) = X ).

In local chart, solving 1 is still solving ODE, so most results still holds for time

dependent vector field. Those are some properties:
e Uniqueness: v, 7, are both integral curves for X, v1(c) = 12(c) = 71 = 72
* Max integral curve exists and is unique.

e Local flow exists.

Now define SuppX= {p e M : X;, # 0 for some t}.
Then X is compactly supported, then X is complete( i.e. a global flow ¢ :
RxM-—->M )
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But something is not true for time dependent vector field:
* translation lemma is not true.
e vector field change under its flow.

¢ global flow can not implies one-parameter transformation group.

2.4 Another Definition of Vector Field

A derivation on M is a R-linear map C*(M) L, C*(M) that satisfies the Leib-

niz rule:

D(f-g)=Df-g+ f-Dg

Theorem 2.30. We have a bijection:

p: TM L {derivation on M}

X Dyx:f—X(f)

Lemma 2.31. D, : ¥,M — R-linear map C*(M) — Rs.t. D,(f - g) = D,(f) - g(p) +

f(p) - Dy(g) is an isomorphism of vector spaces.
Proof. Leave it as an exercise. O

X is smooth

Lemma 2.32. Given a vector field(not necessarily smooth) X = {Xp} ./,

< VfeC®(M),X(f)is smooth.

Proof. "<"Vp € M, take chart (U,z',2%, -+ ,2") around p. X[y = X/, f=2 [
U — R, where f* = X|y(z'). Take ¢ : M — [0,1]s.t. ¢ = 1 near p, Suppy <

Uzt e C2(M).
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Then X (¢-2') = f'near p. By assumption, f*is smooth near p. So f* is smooth,
so X is smooth.

"=" Similar. O]

Theorem 2.33. The map p : TM — {derivationon M}, X — (D, : f — X(f)) is

well-defined and bijective.

Proof. pis well-defined: X (f) € C*(M) by Lemma 2.32, and D,(fg) = D,(f)g +
fD.(g) since X is a point-derivation.

p is injective: D, = D, = Dx, = Dy, as maps C*(M) to R. By Lemma 2.31,
we have X, =Y, Vp. So X =Y.

p is surjective: Given D : C*(M) — C*(M). Define D, : C*(M) — R
by D,(f) := D(f)(p) satisfies the Leibniz rule. By Lemma 2.31, D, = Dy, for
some X, € T,M. Define X = {X,},ens. Then X(f) = D(f), Vf € C*(M). By

Lemma?2.32, X is a smooth vector field. O

3 Lie group, Lie algebra and Lie bracket

3.1 Lie Bracket

In this section, we can actually find those identification:

{Tangent vector at p} = {point derivation at p}
= {R-linear maps C,°(M) DR st

Dy(fg) = Dp(f)g(p) + f(p)Dy(9)}

{smooth vector fields} = {smooth sections of 7'M}

= {derivation on M}
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Notation 3.1. We will identify X € TM with its derivation D, : C* (M) — C*(M).
So a vector field is just a R-linear map X : C*(M) — C®(M) s.t. X(fg) =

fX(g) +X(f)g-
Definition 3.2 (Lie bracket). Given two (smooth) vector field X, Y : C*(M) —
C*(M), we define the Lie bracket

[X,Y]=XoY —Y oX:C®(M)— C*(M)

Theorem 3.3. Forany X,Y € TM, [X,Y]| e TM

Proof. Easy to check that [ X, Y] is linear.

By Leibuniz rule,

[X,Y](fg) = X oY (fg) =Y o X(fg)
=XYf-g+f-Yg9)-Y(X[f-g+ [ Xg)
=(X-Y)(f) g+ f (XoY)(g) = (Y -X)(g9) —f (Y oX)(g9))

= [XvY](f) g— I [XvY](g)

So What is the geometric meaning of [ X, Y]? Non commutatiy of flows.

Fact 3.4. Given X,Y € TM, we say X,Y are commutative vector field if [ X,Y] = 0
XY are commuative iff for any local flows ¢~ : (—e,e) x U — M, ¢¥ : (—¢,¢) x

U — M we have ¢ o oI = oY o X
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Proposition 3.5 (Calculatlon of [V, W] usmg local charts). Chart (U,z',--- ,a"),
? Z WZ— Then

VW eIM, Vg =

0
oxt

Z”l i avz‘) i
oxd’ Oxt

W' Vi 0
_ j W s
: v oxd W ox? )&xi

(V(Wi) W)

Example 3.6. V = z0x + ydy, W = —ydx + xdy commutes.
Proposition 3.7 (Properties of Lie bracket).

(a) Natuality under push-forword.

Given any F' € Diff(M,N), V. e TM,W e TM, we have [F.V,F,W] =
F.[V,W].

(b) R-linearity Ya,be R

[aX + bV, W] = a[X, W] + b[V, W]

[(W,aX + bV] = bW, X]| + a[W, V]

(c) anti-symmetric [V,W] = —[W, V]

(d) Jacobi identity

[V, [W, X]] + W, [X,V]] + [X,[V.W]] =0

23



(f) Leibuniz rule

[fV,gW] = fglViW]+ (f - VoW = (g- W)V

Definition 3.8. Given F' € C*(M,N),V € M, W € TN. We say W is F-related
to VifVpe M, F,.(V,) = Wg,) where F,, : T,M — Ty, N

Example 3.9. F : S' —» R? 0 — (cosf,sinh), V = 00, W = —yox + z0y.

Note 1. In general, given V € TM and F' € C* (M, N). There may not exist IV e
IM s.t. V,W are F-related. Even such W exists, it may not be unique.
However, if F' is a diffeomorphism, given any V, 3 unique W s.t. V and W
are F-related. Actually, W), = F.Vp-1().
Such W is called push forward of V' along F, denoted by F.V, only defined

when F'is a diffeomorphism.

Lemma 3.10. VV € SM, W € EN, F € C*(M,N). Then W is F-related to V iff
VfeCP(N),V(foF)=W(f)oFeC”(M)

Proof. Check that F, .(V,,)(f) = Wy (f), Vfe C*(N) O

Proposition 3.11. Given V, Vy € M, Wy, Wy € IN, F € C*(M, N), W; is F-related
toV;, i =0,1= Wy, Wi]is F-related to [Vy, V1]

Corollary 3.12 (Naturality of Lie bracket). Given any F' € Diff(M,N),V e TM, W €
IM, we have |F,.V, E,W| = F [V, W]

The rest of Proposition 3.7 is easy to check if it is viewed as a mapping

(M) — C(M).
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3.2 Lie Algebra of a Lie Group

Definition 3.13. A Lie algebra g is R-linear space g withmap [—,—| : g x g — ¢
s.t. it is bilinear, anti-symmetric and satisfies the Jacobian identity.

Then (TM,[—, —]) is an infinite dimensional Lie algebra.
For G Lie group, Vg € G we have diffeomorphism

9:G— G, h— gh

rY:G— G,h— hg
We say X € TG is left invariant if [{(X) = X, Vg € G. Similarly, X is right
invariant if r(X) = X.
Proposition 3.14. X, Y are left/right invariant = [ X, Y] is left/right invariant.
Proof. I3[ X,Y] = [l{X,l{Y] = [X,Y] O

So we can find a natural Lie algebra of G:

Lie(G) := {left invariant vector fields on G}, with [—, —] restricted from TG

Theorem 3.15. Given any V € T.G, 3 unique left invariant VelG st V,=V.
Corollary 3.16. Lie(G) = T.G as vector spaces.

Proof of Theorem 3.15.
Uniqueness of V: IA/g = 19,(V.) = 12,(V). So V is determined by V.
Existence of V: Let V = {XA/g}geG where ‘A/g = lg,*(f/e).
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V is left-invariant because
(IV))g = By (Vimrg) = By JI29(V)) = 19,(V) = 7,

V is smooth: Take any f € C*(G) suffices to show V(f) e C*(G).
Take any smooth vy : R — G s.t. v(0) = e,7/(0) = V. Thenl9oy: R - G

satisfies 170 7(0) = g, (17)(0) = g, (1 97)(0) = i£4(V) = ¥,
So
P(7)) = TolF) = 70 01 Dheo = 791 (D)lems @)

Consider the map

FGxRY%ax65>a6G-LR

(9,1) = (g,7(1)) = g-~(t) — flg-~())

Then f is smooth, g—‘;h:o(g) = V() by 3.1. So

V(f) e C7(G). O

a_{|t=0 : G — R is smooth, but

Example 3.17. G = GL(n,R) = {A € M, (R)|det A # 0} = M,(R) =~ R
gl(n,R)= Lie(GL(n,R)) = T;GL(n,R) = M,(R)

Theorem 3.18. VA, B € gl(n,R) = M,(R), [4, B] = AB — BA.

Remark 3.19. This theorem shows that the Lie bracket viewed as the Lie algebra
and matrix are the same. In some sense, it means the Lie bracket defined in three
sets gl(n,R) = T;GL(n,R) = M,(R) can commute with those corresponding, or

equivalently, are just the same.

Lemma 3.20. VA € gl(n,R), the left invariant vector field Ais complete and generate
242

the flow ¢, : GL(n,R) — GL(n,R), ¢:(g) = ge™ = g(I + At + )

2!
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Proof.
A, =g-AeT,G = M,(R)

0 0 ~ ~
a@t(g) = %(g(em&)) = geAtA = Ag-e‘” = A@t(g)

]

Remark 3.21. This lemma tells how to compute A(f) = ﬁ( f)(I) as a tangent vec-
tor or a vector field, as we will see in the next proof.
Proof of Theorem 3.18. Take A, B € gl(n,R). Want to show [A, B]; = AB — BA.
Pick f € C%(G), need to show A(B(f)) — B(A(f)) = (AB — BA)(f)
Further Simplification: Just need to focus on f = z, where z : GL(n,R) —
R, E — (E — I);;. Actually, 0z is what we choose as a basis of 7;GL(n, R).
Such f satisfies f(I + —) is R-linear.
Recall that Given W € TM, W (f)(p) = %f(gofv(p))\t_o.

So B(f)(g) = 5 f(ge™izo
So'since A(B(f)) = A(B) (NI = S (B)E))lomo

A d -~ As d2 52 ) 12 )
AB(f) = ;B0 = g fU+sATEB+ S A+ stAB+ 5B+ )]smt0
Similarly,

~ d2 82 9 t2 )
BA(f) = g /U + sA+tB + S A* + stBA+ S B 4 )]aimo

So A(B(f))—B(A(f)) = f(I+(AB—BA)) = (AB—BA)(f) since f is R-linear. [

Similarly, for G = GL(n,C), Lie(G) = gl(n,C) = M,(C), we have [A, B] =
AB — BA.

Actually, we have those properties of Lie group and Lie algebra.
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* Any simply connected Lie group are determined by its Lie algebra.

* Given any connected Lie group G, its universal cover Gis simply-connected

A~

with 771(G) < Z(G).
What is the meaning of Lie bracket. There is a fact about it:

Fact 3.22. G is connected Lie group. G is abelian iff [—, —] = 0 on Lie(G)

3.3 Morphisms between Lie group and Lie algebras

A smooth map F' : G — H between two Lie group is called a morphism if
F(gh) = F(g)F (h).
A linear map L : g — h between Lie algebra is called a morphism if L{u,v] =

[Lu, Lv].

Proposition 3.23. Let F' : G — H be a morphism of Lie groups. Then F, , : Lie(G) —
Lie(H) is a morphism of Lie algebra.

Proof. Vi, Vi € Lie(G) = T.G, Wi = F..(V;) € Lie(H) = T.H. Let V, W be left-
invariant vector fields.

Claim. W, is F-compatible with V; fori =0, 1.

Proof of Claim. Yg € G, Fy(V,) = F,(4(V)) = (F 0 19),(V) = (IF® o F), (V) =
PO (W) = W, O

So [I//[\/o, Wl] is F-compatible with Vo, Vi]. In particular, [Wy, Wi ] = Fi.([Vo, V1]).
[
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4 Vector Field

4.1 Canonical form of a Field

Recall that V' € M, p € M is called a regular point if V,, # 0, and is called a

singular point if V}, = 0.

Theorem 4.1 (Canonical Form Theorem). Let p be a reqular point of V. Then 3 local

chart (U,z',--- ,2") around p s.t. V|y = ox'

Proof. This is a local problem. We may assume M < R" open. We may also
assume p = 0, Vy = dr'|y where r’ coordinate function.

Let o : (—¢,¢) x (—¢g,e)" — M be the local flow of V.

Define ¢ : (—,e)" — M by (¢, - ,r") = (¢t (0,7%---,7")). Then
(—,r? -+ ,r")is an integral curve for V. Therefore, 1,(0t) = V.

At 0, we have 1, (0t) = Vg = r', v5,,(dr') = or'.

So ¢, 5: T5(—¢,e)" — T5M is an isomorphism.

By the inverse function theorem, 3U" < (—¢,¢)", U <« M s.t. Y|y : U’ — Uis
a diffeomorphism.

Then (U, (¢|) ") is the local chart what we need. O

Remark 4.2. Regular point in a vector field is simple, as we can view it in the
standard chart locally. However, behavior of V' art a singular point can be com-
plicated. For example, for f(z,y) = 2* —y?, V[ = 220z —2ydy, g : C —> C,z — 2",
they behave differently at 0.

4.2 Lie Derivative of Vector Field

V. W e €M, Ly, is the directional derivative of W in the direction of V.
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Definition 4.3. The Lie derivative £,V € M is defined as follows: Vp € M, let
{0: : U — M}e(—c ) be the local flow for V. Then

(EVW) — lim (e—t)*WGt(p) B Wp
P

t—0 t

Remark 4.4. This defintion is actually a difference between Ty, and 7}, which

need pullback.
Lemma 4.5. Ly W is well-defined and smooth.

Proof. For p € M, take local chart (U, z!, - ,a™). Let§ : (—e,e) x U — M be the
flow of V. Take Jy < (—¢,¢), Uy = U. Let 0 = 20 : JyxUy — R, W]y = Z Wiox'.

i=1
Under the basis {0z}, (6_;)+ : Ty, M — T,M is represented by

(59"(—%(@ ﬂf)))m

d (_Z’Z(t’ z)) W7 (0(t,x)) - dz" is smooth in t, z. So

So (9—t>*W0t(x) = Z

0]

([’VW)ac =

is well-defined and smooth. O
Theorem 4.6. Forall VW € M, L, W = [V, W].

Proof. For p is a regular point of V. By canonical form theorem 4.1, 3 local chart

(U,at,--- ,2") around p s.t. V]y = dx'. Let W|y = ZW‘(%%
i=1
Then 0y(x1, - ,x,) = (1 + t, 29, ,2,). SO

oW'?
— Ozl
3

EVW|U = 6:1:’
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[VW!U—EVWZ ZWW ’—Z%Zi-axi

Then [V, W ]|y = Ly W.
For p is a singular point but p € Supp(V). Then 3 p; — p s.t. V,, # 0. By the
previous case (LyW),, = [V, W]|,,. By continuity, We have (Ly W), = [V, W],.
For p ¢ Supp(V), INbd U of p s.t. V|y = 0. Then 6,;(q) = q. So

(LyW)ly = 0= [V, W]y

Corollary 4.7.

Ly W is R-linear with respect to V, W.

LyW = —LyV.

(Jacobian identity) Ly |W, X| = [Ly W, X| + [W, Ly X].

(Jacobian identity) Liyw X = Ly Lw X — Lw Ly X.

Lyv(fW)=VFf) W+ fLyW

Let F': M — N be a diffeomorphism. Then F,.(LyW) = L, (v)Fiu(W).

4.3 Commuting Vector Fields
Definition 4.8. We say V, W € TM commutes if [V, V] = 0.
Theorem 4.9. TFAE:

1 V,W commutes.
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2 W is invariant under the flow generated by V, i.e. 0,,(W,) = Wy,

3 The flow for V,W commutes, i.e. 0,0mns = ns o 0, whenever either side is defined

or equivalently, whose the domain is compatible.

Lemma 4.10. Given F' € C*(M,N),V € TM,W € TN. Then W is F-related to V' if
and only if Vt € R, n, o F' = F o 0, on the domain of 0,, which means

ML N

l@t lm commutes.

M L5 N

Proof. "="Lety = Fo6?:J — N satisfies
V() = (Fof”)(t) = F((07) (1) = Fu(Vor)) = Wrrry) = Wa

So v is an inetgral curve of W starting at v(0) = F(p) ie. Fo@P =~(t) = nf®P(¢)
ie. Fof,=nokF.

"<"Suppose F o, =no F. Then (F o 67)(t) = n'®)(¢).

Then F,.V, = F.((67)(0)) = (Fo0?)(0) = (n"®)'(0) = Wg(,. So W is F-related
toV. O

Proof of Theorem 4.9. 2 = 1: (0_;)«(Wp, () = Wp. So

(Q—t)*(WGt(p)) - Wp
t

=0

va = lim
t—0

1= 2: Let X(t) = (eft)*(Wgt(p)),p e M.

d
Want to show that X (t) = X, for all ¢. Suffices to show E|t:toX (t) = 0.

d
For to = 0, a‘tzoX(t) = (EVW)p = 0.
In general, set s =t —ty, X(t) = (0_4,)« © (0—5)«(Wo,(0,,(»)))- Then

d d
E|t:toX(t) = ELQX(S + to)
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d
= ols(O=t0)s © (6-5)+(Wo, (01, (1)

d
= (eto)*g’3:0(075)*(W95(0t0(p)))

= (eto)* (EVW)eto (p)

=0

2 = 3. For simplicity, assume V, W are complete. F' = 0, : M — M. By 2, W is
F-related to W. So by the lemma,
M S5 M
let lm commutes.
M —— M
n; is flow for W. i.e. 6,0mn = no b,

3 = 21is similar. The diagram commutes, so IV is F'-related to V. O

4.3.1 Canonical Form of Commuting Vector Field

Theorem 4.11. Given Vy,--- ,V;, € €M, s.t.

2) Vip,Vap, -+, Vi linearly independent at some p e M

0

—,V1<i<k
oxt !

Then 3 local chart (U, z',--- ,2") around p s.t. V;|y =
We prove it using the inverse function theorem.

Proof. This is a local problem. So we may assume M/ < R™ be open with coordi-

nate function 7’ : M — R, 1 < i < m.

After translation and linear transformation, we may assume p = 0, V,

0
al’i 67
Take local flow {0} : (—¢,€)™ — M }4e(—-,) for V;.

1<i<k.
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Define ¢ : (—¢,e)k x (—e,e)™ % — M, (¢!, [ tF rktl oo ey = 0] 007 --- o
0 (0,0,---,0,r%*1 ... ™), where §’ commutes with each other.

So if we fix t/,j # i except t!, (t!, - #7L — ¢ gk pkEL L ey s an
integral curve for V*. Then V" is ¢-related to ot

On the other hand. (0,0, --,0,7**% ... ™) = (0,0,---,0,78"1 ... ™). So
Vg T Ty(—e', €)™ — T5M, 0" — Vg = 02'|g and 0r' — Or' k + 1 < i < m.

So 5 ,, is an isomorphism.

By the inverse function theorem, there exists Nbh U’ < (—¢',¢")™ s.t. ¢ : U’ —
U is a diffeomorphism and U < M open.

Then (U, (¢|y)~!) is the local chart we need. O

44 The Constant Rank Theorem

FeC®(M,N),pe M. The rank of F' at pis

rank, F' := rank(F, . : T,M — Tp@)N)
Fi
= rank (6 — (p)>
ox S

We say F has constant rank & near pif INbh U of p s.t. rank,F' = k,Vge U

Proposition 4.12.
rank,(F) < min(dim (M), dim(N))

Theorem 4.13 (The constant rank theorem). Suppose F' : M — N has constant rank

k near p € M, then 3 local charts U —— R™ around p, V % R™ around F(p) s.t.

YpoFopt:R™ - R"isgivenby (z,--- ™) — (2*,--- ,2%,0,---,0)

Proof. This is a local problem. So we may assume M = R™, N = R" by restricting
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to local charts. And p = 0, F(p) = 0. After changing orders of coordinates, may
OF"
O’
Then F(z,y) = (Q(z,y), R(z,y)). Consider ¢ : R™ — R™, (z,y) — (Q(x,v),y).

Then

assume < (O)) is invertible. Write R™ = R* x R™* R" = RF x R"*,
1<i <k

_ (?Qi -

oxd

(0)

©(0,0),% (4.1)
Q!

| Jy?

(O) [mfk

is invertible.
By inverse function theorem, 3 Nbh U, < R™, ﬁo cR™of0 s.t.p:Uy— (70 is

a diffeomorphism.

-1

~p F

Uy=—=U; — R"
)

Q. y),y) < (z,y) = (Qz,y), R(z,y))
So Foyp!:U; — R (z,y) — (z,A(z,y)). And

I, 0
(Fog™)pa = (4.2)

Z—f (p) % (p)

A
Since rank(F o ¢7!) is k, (;—y(p) =0. ie A(x,y) = A(z).

We can find amap ¢ : (z,y) — (z,y — A(x)) in a smaller neighborhood of 0 by

the inverse theorem similarly.

And ¢ o F' o p maps (z,y) to (z,0). So we end the proof. O

Definition 4.14. F' € C*(M, N).
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We say I is submersion if F}, . is surjective Vp € M.

We say F' is immersion if F, , is injective Yp € M.

We say F' is embedding if F' is immersion and F' is a topological embed-
ding.(i.e. F': M — F(M) is a homeomorphism)

If F is embedding(immersion resp.), we say M or F'(M) is an embedded sub-
manifold(immersed submanifold, resp.) of V.

Denote M 9> N be the immersion. M — N be the embedding.

Example 4.15.

There is an example F' : S' — R? where F is an immersion but not an

embedding.

Projection M x N — M is a submersion.

E % B is a smooth vector bundle, then p is a submersion.

v : R — M is an immersion < 7/(t) # 0, Vt.

There is an example v : R — R? is injective immersion but not an embedding

e v:R > T? =R/z xR/z, 2 — (z,cx), c ¢ Q is injective immersion but not

embedding.

Definition 4.16. For F' : X — Y, we say F'is proper if for any compact set X < N,
F~1(K) is compact.

Lemma 4.17. X is compact, Y Hausdorff, then F' : X — Y is proper.

Proposition 4.18. ' € C*(M, N) is an injective immersion, and F is proper. Then F

is an embedding.

Proof. F': M — F(M)is a closed map. O
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Definition 4.19. For F' € C* (M, N).
p € M is called regular point if F}, . : T,M — Ty, N is surjective.
p € M is called critical point if F, , : T,M — Tp(, N is not surjective.
q € N is called regular value if Vp € F~!(q), p is a regular point.
q € N is called critical value(or singular value) if 3p € F~!(q), p is a critical

point.
Theorem 4.20 (Sard). Singular value has measure 0.
Proof. We will not prove it in this lecture. O

Theorem 4.21. M is an embedded submanifold of N if and only if Yp € M < N, 3 local
chart (U, z*,--- ,a")aroundpof N s.t. M nU = {(z',--- ,2™,0,---,0)}

Proof. "=": F': M — N is embedding = F has constant rank m. Apply constant
rank theorem near p, and we finish the proof of "="
The converse is trivial.

[l
Theorem 4.22. F' € C*(M,N), q is a reqular value of F. Then F'~*(q) is an embedded
submanifold of M. And

¥pe F~(q), T,F ' (q) = ker(Fp : T,M — T, N)

Proof. qis regular value = rank,F = n, Vp € F~(q).
= rank, F' = n, Vp' near p, since we know the rank of p’ near p should not be
less than that of p

So by the constant rank theorem, F'~!(g) is a submanifold near p.
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Denote

so(n) = o(n) = {Ae M,(R)|A + AT =0}
u(n) = {A e M,(C)|A + A* = 0}
su(n) = {A e u(n)|trAd = 0}
sl(n,R) = {A € M,(R)[trA = 0}

sl(n,C) = {A e M,(C)[trA = 0}

Theorem 4.23. Those above sets are the Lie algebra of the corresponding Lie group. For

instance, su(n) = Lie(SU(n)).

5 Differential forms

5.1 Introduction

Our goal is to define the integration JM a s.t.

¢ Works for any smooth manifold A, without embedding M into R"

* Generalize two types of surface integral, ie. (. fdSand {; fdz A dy
For Cartan’s idea, « is a "differential k-form" on M s.t.

e VF e C*(N,M), F*(«) is a k-form on N

o Ifk = dimM,thenSMaeR
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5.2 Alternating Vector Linear Algebra

For V4,---,V,,W be R-vector spaces, f : Vi x --- x V, — W is called multi

R-linear if
f(vla Cee Vi1, QU F bUZ/->Uz‘+1a T ,’Un) = af(Uh cy Vi—1, Vi, Vg1, - 7Un)
(5.1)
+ bf(vla e 7U7L—17’Uzl‘avi+17 e avn)
Example 5.1.

Inner product R x R" — R.

Matrix multiplication M,,«,,(R) x M,k (R) = M« (R).

Cross product R? x R3 % R?.

Bilinear form.

We hope that we can construct a vector space V; ® --- ® V,, s.t. we have

canonical isomorphism:
{multi R-linear maps V; x --- x V;, > W} = {linear map V, ®---®V,, - W} (5.2)

Then we can transform the study of multilinear algebra into the study of the nor-
mal linear algebra.

For any set S, let

i=1

R(S) = {formal linear combination 2 a;s;la; € R, s; € S;n < oo} (5.3)
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k
Consider R (V} x --- x V,) = {Z a'(Via,-, Vip)la' e Ryv; € V}}. Denote
=1
W= Span{(-+ avy +bfo-) —al- v ) —b( 0 b e Bovof € V)
(5.4)
Define Vi®- - -®V,,= R(V} x --- x V,,) /w, write [(vy, -+ ,v,)] as 11 ®- - -®v,, called

a n-tensor.

Proposition 5.2 (Universal Property). We have a multi R-linear map q : Vi x --- x
Vi > Vi® @V, (v1,v2,-+ ,0,) — 11 QU2 ® -+ @ vy,. It satisfies the universal
property:

V multi R-linear map f : Vi x---xV,, - W, 3 unique linear map Ve eV, —

W s.t. fo q = f. 1ie Thediagram commutes:

Vi@V,

pT af

%X"'XVnL)W

Corollary 5.3.

{multi R-linear maps Vy x --- x V,, > W} = {linearmap V, ® - -- Q@ V,, » W} 55)
5.5

~

feT
Proposition 5.4.
o Anyelementin Vi ®---®V,, can be written as Z av; @ ® v} for some a; € R.
o If(€]) e, isabasis for V;, then {e]' ®el2®- - -®elr|j; € A;} is a basis of Vi®- - -®V,.

o dm(Vi®---®V,) = | [ dim(V})
i=1
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Proposition 5.5. Denote W* = Hom (W, R), then we have an injection

V@ W* 5 Hom(W, V)

(5.6)
v® f = (we— fw)-v)
If dim V or dim W is finite, then e is an isomorphism.
Indeed, if dim V' = oo, then idy ¢ e(V ® V*)
Given any /; e Hom(V;, W;), 1 < i < n, we define
L® @l eHm(Vi®@ @V, Wi ®---W,) 5.7)
5.7
(L@ @L) (@ ®vy) =li(v1) @ ®ly(vn)
Proposition 5.6. If dim V; < oo, V1 < ¢ < n, then we have isomorphism
Vi@ - @VF= (i - @V,)*
n (5.8)
fi®® (@1@-.-@% - Hﬂ(w)))
i=1

F = = {bijecti 1,2, t h
or@\/ V- ---®V,S, = {bijection on {1, 2, ,n}}acson@;)\/,w ere

n

o (V1® @) = Vp(1) ®+* ® Vp(n) (5.9)

A tensor T € (X) V is called symmetric if o(7') = T, Vo € S,,.
T is called anti-symmetric if 0(7") = sgn(o) - T, Yo € S,,.
Define
Sym"(V) = {symmetric tensors in (X) V'}
" (5.10)
/\ *(V) = {anti-symmetric tensors in (X) V'}

n

41



which are both in ) V. And

dim(Sym™ (V) = (dim(v) e 1) dim(/\"V) = (din;(v)) (5.11)

n

From now on, we may assume dim V' < co. Define
L"(V) = <® V) ~ (X)) V* =~ {multi R-linear maps V; x --- x V. —> R} (5.12)

And by the assumption we can obtain

Sym"(V*) = {symmetric multi R-linear maps/: V x --- x V — R} 5.13)
5.13

/\"(V*) ~ {anti-symmetric multi R-linear maps/: V' x --- x V — R}

We will mainly focus on A"(V*), also denoted as Alt"(V)= A"(V*). An element
in Altk(V) is called a (linear) k-form on V Now for V' = R{ey,- - ,e,), V* =
R (ef,--- ,e*). Then

L*(V) = {all bilinear forms on V'}

LAV) = sym* (V) @ /\ (V™)

And Sym®*(V*) = R{ef ® e} + ¢ ® ef|1 < i < i < n) is symmetric bilinear form
AP (V) = A*(VF) = R{ef ®el — el @ef|l < i <i<n) is anti-symmetric bi-
linear form.

The determinant det € Alt"(R™).

Definition 5.7 (Exterior product).

/\ AR (V) x Al (V) — AlEH(V)
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1

Pl 2 Sgﬂ(@%(vo(l),'“ avcr(k:))w2<va(k:+l)7"' ,Ua(k;+l))

UESk+l

w1 A WU, Vgyy) =

= Z Sgﬂ(U)wl(%(l)f“ ava(k))w2(va(k+1)w' avo(k-i-l))

€Sy,
where Sy, = {0 € Spyplo(l) < - <o(k),o(k+1)<---<o(k+1)} < Skt
Then we have those properties:
Proposition 5.8.

(1) w1 Awy = (—D)rllzliy A, |w| = kis w e AIt* (V). In particular, w A w = 0 if

|w| is odd.
(2) (w1 A we) Aws =wy A (wy A ws)

(3) Givenany wy,--- ,wy € AYV) =V*, vy, ,up € V. Then

(W1 A Awg) (v, o) = det [w;(vy)]; (5.14)
Moreover, wy A - -+ A w,, # 0 iff w; are linearly independent.
(4) V. =R{ey, - ,e,). Then
A (V) =R (e} A nel]ip <o <iy) (5.15)

n

In particular, At"(V) = R{e* A --- re¥). And we denote Alt°(V) = R,
AltF(V) =0, k > n.

(5) Any f € Hom(V, W) induces Alt"(f) e Hom(Alt*(V'), Alt*(W)), where

AR (F)(w)(wr, - we) = w(f(w), -+, fwn)) (5.16)
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We have Alt*(f o g) = Alt*(g) o AIt"(f), Alt*(idy) = idyye . Such Alt*(—) is

called a contravariant functor.
Proof.

(1) By definition,
w1 A w2(U1; T >Uk+l) = W2 A wl(va(l), te ava(kz-i-l))

1+ k 1<i<l
where o (i) = .sgn(o) = (=1)*,
1= I+1<i<k+1
(2) By definition.
(3) By linearity, we assume w; = € ;), v; = ey(;) for some a(i), b(j). Further more,
can assume {a(i)} = {b(7)}. (Otherwise, LHS = RHS = 0.)
Then e}, (es()) = da(i)n(j)- After permutation, may assume a(i) = b(i), Vi. It

is direct to check LHS =1 = RHS.

(4) If wy, - ,wy are linear independent. Then 3 basis ef,--- e’ of V*, basis

e, - e, of Vo st w; =ef, V1 <i<n.

(Wi A Awp)er, - ye,)=det(l)=1#0=wi A Aw, #0

k—1
If wy,- - ,wy are linearly dependent. WLOG, we assume wy, = Z a;W;.
i=1
k—1
(Wi A Awg)er, - en) = Zai(wl Ao Awg—1 Awg)(er, e, en) =0

i=1

~
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(5) Foriy < -+ <, j1 < - - < j, we have

(6- /\"'/\eik)(ejla"' 7ejk) = (517)

0 otherwise

Since dim Alt(V) = dim A*(V*) = (Z) =es Ao At <o <gdl

(6) For w e Alt"(W), f € Hom(V, W), define Alt"(f)(w) € Alt"(V) by

Definition 5.9.

An R-algebra consists of an R-vector space A with a bilinear map p1: A x A —
A that is associate, i.e. p(a,pu(b,c)) = u(u(a,b),c).

Say Aisunitaryif 31e€ A s.t. p(a,1) = p(l,a) = a,Vae A

Say Ais graded if A = @ Ay as vector space, and p(Ay x A;) < Agyy. Elements
in Ay, are called homogenéﬂgﬁs elements of degree k.

If A is graded R-algebra, we say A is anticommutative if u(a,b) =
(=1)k* (b, a),Va € Ay, b e A, And say A is commutative if p(a,b) = u(b, a), Va,b.

If Ais graded R-algebra, say A is connected if 3 unit 1 € A, s.t. the map

e:R— Ay, r+— r-1isanisomorphism.
Given vector space V, let

AIF(V) == D, Alt"(V)

Alt*(V*) == @kzo AE(V)
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By Proposition 5.8, we have the theorem

Theorem 5.10. (Alt*(V'), A) is a graded connected anticommutative R-algebra, called

the exterior algebra of V' or exterior algebra of V

5.3 Operation on Vector Bundles

Given R" — E 5 M, meaning a vector bundle £ 5 M of dimension n,
local trivialization {Ua, Vo : T HUy) U, x R”} . By shrinking U,, we may
acA

assume we have an smooth atlas {(pa U, S Rm} .
acA

For z € M, use E, to denote 7~ !(x), fiber over x, which is a vector space of
dimension n.

Then Dual bundle of a vector bundle R” — E 5 M is
E* = {(z,))|lre M,l e (E,)*},n" : E* - M, (z,]) — x, (w’)’l(x) = (E,)* (5.18)

Define topology or smooth structure on £* s.t. ' : E* — M is a smooth vector
bundle.

For a € A, let E* = 7'~'(U,), we have a bijection

bijection

Po : B R™ x (R")* —=—— R™*"

(ZL‘, l) — (77/)(1(%), (Qpa,z)_l(l))

We can check that

(1) {g2t|a € A,V < R™" open} is a basis, we use it to generate a topology on

E*.

(2) Use &, : E* 5 R™™" a e Aasan atlas to give E* a smooth structure.
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3) E* ™, M is a smooth vector bundle, called the dual vector bundle of £ 5
M, where
(E%)s = E7

We can define other operations on vector bundles in similar way:
GivenR"” — E 5 M,R™ — F 5 M, we can define

R™" < EQF 5 Mwith(EQF), = E,®F,

R™ < EQ F % M with (E® F), = E, ® F,
R™ — Hom(E, F') ©> M withHom(FE, F), = Hom(E,, F,)
RG) < AlF(E) - M with
Alt"(E), = Alt"(F;) = {alternating k-linear [ : E, x --- x E, — R}

Then Alt*(TM) = A" (T*M).
Alt*(M), = {alternating k-linear | : T, M x- - -xT,M — R} = {linear k-form on T}, M}
Define

['(E) := {smooth sections of £} = {s€ C*(M,E) : mos =idy}

Definition 5.11. Given smooth M, define a differential k-form on M to be an ele-
ment in I'(Alt*(T'M)) is a differential k-form « assigns each = € M a linear k-form

afr) e AR (T, M).
Denote Q¥ (M) be the set of all the differential k-forms.
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Then Q°(M) = C*(M,R). Alt'(TM) = T*M = a 1-form on M isjust a "cotan-
gent vector field" on M.

QF(M) = 0if k = dim(M).

5.4 Differential forms using local chart

Given local chart (U, z!,--- ,2™) of M.

Forany pe U, {%]p}lgi@ is a basis of T, M.

We denote the dual basis of T M by {dz"|,}1<i<n-

For any a € Q' (M), a|y can be written as Zn] fida’, where fi e C*(U,R).

=1
Similarly, {dz"'|; A --- A dz®|,|i; < --- < i} is a basis for A*(T*M), so Yo €

QF(M),
aly = 2 fir ipdx™ Ao A da™, fy € CF(U,R)
1< <tp
We give the notation that I = (i1, - ,iy), write fi, .. ;,dx;, A+ - Aday, as fldal.

Change of coordinate If (U,z',- - ,2") and (V,y', - ,y") two charts of M and

peUnV,then
dyi = > Wi 4y (5.19)

5.5 Exterior Differential

For k = 0, define d : Q°(M) — Q' (M) as follows:
Vpe M, X, e T,M,df|,(X,) = X,(f) € R. Inlocal chart, df = Z o
i-1

~ Jz;

dz'.

Theorem 5.12. 3 linear operator d : Q¥(M) — QFY(M) s.t. For a € Q(M),

aly =) flda’ = daly = Y df" A da (5.20)
I I
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Called the exterior differential
is compatible for two charts

Proof. It suffices to prove that (5.20)
commutative.

U,z 2™, (Voyt, -y, e the diagram is

oy oyt ;
gy dz*t A - A da',

fdyt A oo A dyF f T
1<i1,z‘2,z-,ik<n ozt Oz
ld ?J'd
0 oyh oytr X ,
—f- y_... % dz? Adz"™ A - A da'*

af i i1 ik ?
2, gt Adyt A Ady X At
1<iy,ig, - ,ipx<n

O

Theorem 5.13.

(1) d*> = 0.
(2) Yae QF(M),Be Q M), d(a A B) =da A B+ (=1)*a A dp

Proof.
(1) If a|y = Y f'dz’. By linearity suffices to check
y y
U

dod(fdz') =d ( > %dmi A dx1>

1<i<n
2
Z a—fdzz:j A dzt A da!
ox’

1<i<n
i<j<n

=0

(2) By linearity, suffices to assume a = fdz!, 8 = gda'.

d(a A B) = d(fgdz’ A 27)
= Z %dxl/\dx‘]

1<i<n
0 )
= Z (gf,g+f3—g.) dzt A da! A daz?
1Si=n ox’ ox’
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And

% )
danf= Zéa];gdx’ A dz! A da?

ands=>] %fdxl Adat A de? = Z(—l)k%fdxi A da! A da?

i

O
Example 5.14. For M = R?,
QO(R3) —— C™(R3)
d gradient

QL(R3) +— TR3, fdx + gdy + hdz +—— fox + gdy + hoz

O2(R3) «+— IR3, fdx A dy + gdx A dz + hdy A dz «—— f0z + gz + hoy

d divergent

D3 (R3) +—— C®(R?), fdz A dy A dz
5.6 Pull Back of Differential Forms

For F'e C*(M, N), a € Q¥(N), define the pullback F*(«) € Q¥(M) as follows:

vpe M7‘/1 7Vk ETpMaF*(Oé”p(‘/l?'” 7Vk) = Oé‘F(p)(Fp,*(‘/l>7 JFp,*(Vk>) ER

Actually, F*|, = AIt"(F, ) : Alt*(Trgyn) — AlE*(T,M).
Proposition 5.15. For F : M — N,G: N — L.

(1) feQYN), F*(f) = foF e Q' (M).

(2) F*(a n B) = F*(a) A F*(5).

(3) F*(da) = dF* ().

@) (GoF)* = F*oG*
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Proof.

Al (Fp 4)

AU (T N) — ALt (T,M)
1) ‘ ’ ‘ ’ commutes.

id

ALF (Trpn) x Al (TreyN) —— AT, M)
@) lAltk(Fp,*)xAltl(Fp,*) lAltk“ (Fp5) CcOmmutes.
AR (T, M) x AT, M) —2— Alt*(T,M)

(3) By linearity it suffices to check
dF*(fda') = F*d(fdz")

By Leibniz rule for d and (2), it suffices to show
(a) dF*(df) = F*(df)
(b) dF*(dz') = F*(d(dz"))

Which leaves to the readers.

(4) By definition.

Definition 5.16. A k-form w is closed if w € ker <Qk(]\/[) 4, Q’““(M)).

A k-form w is exact if there exists a (k — 1)-form 7 such that dn = w, or equiva-
lently, w € Im (Q’H(M) LR Qk(M)).

By Proposition 5.15 (1), exact k-form are all closed.

So we may define the k-th de Rham cohomology of M

ker (d QR (M) S Q’““(M))

HEL (M) = (5.21)

Im (Q’H(M) LR Q’“(M))
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By Proposition 5.15 (2), we have VF € C°(M, N), w € QF(N).
Then w closed = F*w is closed. w exact = F*w exact.

So Finduces a linear map

F* 2 Hip(N) — Hpg (M)

[w] = [F7w]

Proposition 5.17 (Key properties of HE (M)).
(1) (FoG)*=G*o F*
(2) (id)* = id.
(3) F,G e C*®(M,N), F homotopic to G = F* = G*
(4) If F is a homotopy equivalence = F* : Hip (M) — HEg (N) is an isomorphism.

Remark 5.18. Properties (3),(4) are nontrivial, which is the essential part of the

theory of de Rham cohomology
Proposition 5.19. H) (M) = R (mq(M)), where mo(M) = {path component of M}.
It suffices to prove the lemma that

Lemma 5.20. o € Q°(M) = C®(M,R"). Then « is closed iff « is constant on each

component of M.

Proof. The inverse part is trivial.

Assume « is closed. Pick p,q € M in some path component. 3 smooth path

v:R—M,~(0) =p,7(1) = ¢
d
dazosd(y*a)zozd(aoy):O:%

So a(p) = a(q) u

— 0= aory(1) = aor(0).
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We have HE. (M)

lIe

Ab(m(M)) ®z R. Ab(m(M)) is the Abelian group of
71 (M). In particular, H)x (R?) = 0, Hbz (R*\{0}) # 0.
Let us stop the discussion of de Rham cohomology for a moment, and move

on to the next topic.

6 Orientation and Integration of Differential Form

6.1 Orientation on Manifold

An orientation on a finite dimensional vector space V' is an equivalent class of

ordered basis
o = (ala"' 7an)T ~ B = (617"' ,6n)T©det(aﬂT) >0

Each vector space has exactly two orientations. And we actually have the 1-1

correspondence

{orientation on V'} < (Alt"(V)\{0})/r+
[(e1, - en)] o el A Aeg]

An orientation form on ) of dimension n is a nowhere vanishing w € Q" (M) i.e.
an orientation form is a nowhere vanishing section of Alt"(T'M).

Two orientation forms wy, wo are equivalent if 3f € C*(M,R") s.t. wy = fw,.
An orientation on )M is an equivalent class of orientation form.

An orientation manifold is a manifold that has an orientation.

An oriented manifold is a manifold equipped with an orientation.

Example 6.1. |mo(M)| = k = M has 2 orientations or no orientations.
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Example 6.2.

1. U < R™ open. U has a standard orientation, represented by the form dz' A

.-+ A dz”. Denote this standard orientation as Ogq

2. (M,0p),(N,Oy) oriented manifolds = (M x N,Oy x Oy). If Oy =
[WM],ON = [WN], then OM X ON is defined by [7r}’(/[(wM) A ﬂ?V(WN)]- (7TM,7TN

is the pullback of the projection map)
3. T™, S™ are orientable.
4. RP" orientable iff n is odd.

Proposition 6.3. Let U = {U,} be an open cover of M. Suppose we have an orientation
O oneach Uy, s.t. Oulv,nvs = Oplu.nvs, Yo, B. Then 3 unique orientation Oy on M

s.t. OM|Ua = Oa.

Proof. For each a, we have w,, € Q"(U,) nowhere-vanishing. And

w0t|UaﬁUﬁ = faﬁ . WB|UamUﬂa faﬁ . Ua M Uﬁ — R+ (61)

Take partition of unity subordinate to U, {¢,}.
Setw = Z Yo - Wo. Then w is nowhere-vanishing by (6.1).
The uniq?leness follows from the fact that n-form is equivalent if and only if it

is equivalent on each chart. O

Definition 6.4. Given (M, Oy ), (N,Oy). f € Diff(M,N). Say f is orientation

preserving if f*(Oy) = O,,. f is orientation reversing if f*(Oy) = —Oyy.

Lemma 6.5. Uy, Uy < R” open. Then f : (Uy, Osta) — (U2, Oga) is orientation preserv-
ing iff

ofi
Vpe Uy, det(Df],) >0 Df = (é’iﬂ')
1<ij<n
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Proof. For Ogq = [da! A -+ A da™],

fAdat Ao Ada™) =dft Ao AdfT, dff = gf.d:ci
xl

i=1

= det(Df)da! A - A da”
Then
det(Df) >0 < f*(dz* A - Ada™) ~dzt A - A da”
And f*ostd = Ostd
< f is orientation preserving

]

Given (M,0), p € M, a basis ey,--- ,e, of T,M is called oriented if O, =
[(er, - en)].

Achart U % V °C R" is oriented if ©*(Oxa) = Olu.

A smooth atlas {Ua LN a} M is oriented if each chart U, 2% V, is oriented.
QE.

A smooth atlas {Ua RN a} M is called positive if Vo, 5 € A,
aeE

Vap = ¢p 0 @b pa(Us N Ug) — p3(Us N Up) is orientation preserving

By Lemma 6.5, this is equivalent to det(Dy,s|,) > 0 for any p € ¢, (U, n Us).

6.2 Integration on Oriented Manifold

Goal: Given M,0, w € Q2 (M) = {compactly supported n-form on M}. Then

Supp(w) = {p € M|w, # 0 € Alt"(T,M)} is compact.

We hope to define §,, w € R.
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For M " R", © = Oyq. Then Yw € Q7 (M),

w=fdaz' A Ada", feCP(M)

Define §, w = §,, fdu where p is the standard Lebesgue measure on R".

S

pen

Lemma 6.6. U,V T R, ¢ : U = V is orientation preserving. Then Yw € Q*(V), we

have §, ¢*(w) = §, w.

Proof. If w = fda' A -+ A da™, then

e (w) = @*(f) Ade' A A de”
6.2)

7

= (foy)det (?g@) dz'' Ao A dat”
07 J1<i j<n

)

o0
> SU #hw) = JU<f °p) det (afj>1<ij<n = Jv Jdu = va

So we can define the integral over special w and general M.

Definition 6.7. If w €Q? (M) = {n-forms with "small" support}
= {w e Q*(M)|Foriented chart ¢ : U =V s.t. Supp(w) < U}.

We define §, w = §, o7 "*(w)
Claim. If Supp(w) < U, n Ug, then Sva o (W) = Svg 90517*(&])

[0}

Proof.

Pap - Ya(Ua 0 Uﬁ) — @ﬁ(Ua M UB)



Theorem 6.8. For any oriented (M, O), 3 unique linear map §,, : Q2 (M) — R that
extends §,, : Q(M) — R,

Proof.

Step1: There exists an oriented atlas U = {y, : Uy — V, s R™"}qea. Indeed,
pick any smooth atlas &/ = {U, 2 Vi aea By replacing ¢, with r o ¢, where
r(zy,--,x,) = (=21, -+, x,). We can get the oriented atlas ¢/'.

Step2. Pick a partition of unity subordinate to U, {¢, : M — [0, 1]}

Now we begin the main proof:

Let wy = po - w. Supp(ws) < Supp(ps) N Supp(w) < U,. And w, € Q2 (M)

Claim. w, #= 0 for only finite many a € A

Proof. Vp € Supp(w), 3 neighbourhood W, only intersects Supp(p,) for finitely
many o.
Since {W),} pesupp(w) 1S an open cover of Supp(w), by compactness, Supp(w) only

intersects Supp(p,) for finitely many «.

Therefore, w, # 0 for only finitely many o O
By this claim, since Z Po=1=w=wy +  + Wy, for some ay, -, € A.
acA
We may define

szZJwa:fwal+---+J Wa, €R (6.3)
M R, M M

This proves existence §,, ., 1) : (M) = R.
Uniqueness: Yw € Q7 (M), Jwy, -+ ,w € Q¥ (M), w = wy + - - - + w, as the claim
proved.
So J w= Z J w; is uniquely defined. O
M s1IM
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Remark 6.9. We actually obtain that each w € Q()M) can be expressed as Z Wi
k=1
where wy, € Q7 (M).

Proposition 6.10.

~

1. f:(M,On) = (N,Oy). If [ is orientation preserving, then §,, f*(w) = {, w. If

[ is orientation reversing, then §, f*(M) = —{, w.

2. S(M,I)w = S(M,@) w.

3. If Supp(w) c U C' M, then S yw=1,w.

Proof. Leave as exercise. [

6.3 Smooth Manifold with Boundary

Now let M be the smooth manifold with boundary, )M = N. ie. M hasa
smooth atlas {¢, : U, = V, o Reo x R*1.

We can define T, M, TM, Alt"(M), Q¥ (M), QF(M), Q¥ (M) and orientation sim-
ilar as before.

For p € 0M, X e T,M is called outward if 3 local chart ¢ : U = V around p
s.t.

0p#(X) = a0zt + -+ + a,0x" with a; > 0

Recall that if M is n dimensional manifold with boundary, then N = 0M is a

n — 1 dimensional manifold without boundary.

Proposition 6.11. For any orientation Oy on M, 3 a unique induced orientation Oy
on N = 0M st Vpe N, X =T,M outward, ey, - - ,e, € T,,N is an oriented basis.

Moreover, (X, ey, - -, e,) is oriented basis of T,M.
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Proof. Take oriented atlas U = {¢, : Uy = Va}aca.
We have ¢, (U, n Ug) < {0} x R"1.
Define ¢, : N n U, = ({0} x R* ) A U,. Then U'{¢),,} is a smooth atlas for N.
U is oriented implies U is positive, so is U. So there exists the unique Oy s.t.

U’ is oriented. ]

Theorem 6.12 (Stokes” Theorem). M is n dimensional manifold with boundary, ori-
ented by Oy;. N = 0M, with induced orientation Oy. v : N — M is the inclusion map.

Then Yw € Q7= (M), we have

| o] rw (6.4

Proof. By Remark 6.9Vw € Q"1 (M), w = w;y + - -+ + wy, w; € Q7 (M).
By linearity, we may assume w € Q7(M), Supp(w) < U, for chart ¢, : U, = V.
oo ¥ (w) € Q2(V,) induces w’ € O (R<o x R"!) if we extend it by 0.

By considering w’ instead of w, we may assume M = R, x R"! and we just

W) = dw’
Rn—1 R<0 xRn—1

Letw’zzzzlf’“dxlA--'/\cTz\k/\~--/\dx”.

need to prove

By linearity, we may assume w’ = f*dz! A -+ A dzk A - A da™

noAck
dw' = ( Zfz dz’)
i-1 9t (6.5)
k
= %( 1)’“_1dx1 A A dz”
x

Fork =1,
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J dw' =
R<0 xRn—1

Fork # 1,

Rgo xRn—1 RgoXRn71 R

: k
llID f(l’l,l’g,"',o,"'
Rn—1 Tp—+00

det ada?- - Adap A - Ade

0
|, e

r

Rn—1
r

Rn—1

[ (W)

Rn—1

dz!

Rn—1 R<o 6$1

(fl(O,xg, o

f1(07x27 o

Sa™)da? AdaP A Ada

- oxk

)dx2/\-~/\d:p"

7xn)7 lim fl(xlax%'” wrn)) de

n

an)_ lim fk(xlax%”'

XTp—>—00

A dx

o)

]

Theorem 6.13. For any smooth orientable compact manifold M, oM is not a retract of

M, i.e. thereis no continuous map r: M — 0M s.t. r|ay = idon

Proof. Assume such retraction r exists. After homotopy, we may assume 7 is

smooth followed form Whitney approximation Theorem 1.41

Pick an orientation on M and such an orientation induces orientation on oM

and hence, there exists an orientation form w € Q" 1(0M)

vanishing.

Then S&M w # 0.
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Noticed that r o 7 = id, we have {, w = §,  *(r*(w)) = §,,d(r*(w)) =

§,, 7 (dw) =0 O
Corollary 6.14. f : D" — D" continuous. Then 3x € D™ s.t. f(x) = x.

Proof. Suppose thereisno x s.t. f(z) = z. Let [, be the unique ray form f(z) to
.
Define r : D" — S" ! by r(z) = I, n S". Then r is continuous, r(z) = z for

z € S"!, which is contradiction to the previous theorem. O

6.4 Riemannian Metric

A Riemannian metric g on M is a smooth section of T*M Q T*M s.t. Vpe M,
gp : Ty,M ® T,M — R is symmetric and positive definite.

Or equivalently, g, is a bilinear map from 7,M x T,M — R s.t.
gp(v,w) = gy(w,v), gp(v,v) = 0 with equality holds iff v = 0

We also write g, (v, w) as (v, w), v,w € T,,M.

In a local chart (U, 2, - -+, 2™),

glv = Z gijdz' ® da?

1<i,j<n

6|>
p’axjpp'

where g;; € C*(U,R), g:;(p) = (5

ozt

We will abbreviate Riemannian metric to just metric in this lecture, just for

convenience.
Example 6.15.

(1) Euclidean metric on R”, goq = Z dr' ® da’.

i=1
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f
(2) Given any N % M, any metric g); on M, we can pullback g, to metric on

gn by (VW) = (foxv), fp7*(W)>f(p) eR,Vpe N,V.W e T,N.

When f is an embedding, also write f*(gas) as gu|n

(3) For S ! — R", gyi|sn—1 = ggn-1, T,5"* =~ p*. So <v,w)p = (v, w).. Hence

S"~1 has constant positive sectional curvature

Z dz' ® dzt
4) For M =D ,g = Zzl—n called Poincaré disk model, has constant
(1= )
i=1

sectional curvature -1.
Proposition 6.16. Any smooth manifold has a Riemannian metric,

Proof. Take a smooth atlas U = {(U,, ¢.)}, take partition of unity p, : M — [0, 1]
subordinate to U.

On each (U, z!, - ,x"), take the standard metric

Jo = i da' ® da*

=1
Then g = Epaga eN(T*MQT*M).

m

For Vp € «, there exists finitely many «o; s.t. g, = Zpai (p)ga,. Positive
i=1

linear combination of positive definite symmetric form is still positive definite

and symmetric. Thus, g is what we need. O

Consider R® — E — M a smooth vector bundle.
A Riemannian metric on £ is a smooth section g € ['(E* ® E*) s.t. Vpe M, g,

is a symmetric, positive definite bilinear form.
Proposition 6.17. Any smooth vector bundle has a metric.
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Proof. It suffices to replace 7,,M to vector bundle in the previous proof. O

Corollary 6.18. For any smooth vector bundle E, E is isomorphic to E*.  ie. dp

diffeomorphism  s.t. p restricts to linear isomorphism E, — ExM for any p € M.

Proof. Pick a metric g on E. Define £ L E* v gp(v, —). It is easy to check p is

an isomorphism. O
In particular, TM = T*M.

Theorem 6.19. Let M be oriented manifold. Then any Riemannian metric g determines

an oriented n-form Vol € Q"(M), called volume form.

Proof. Take oriented chart (U,, z',--- ,z™), we get vector fields 0z’ on U,,.

Apply Gram-Schmidt process,

ol ox? — (0x?, €1>g
U latly T Tlow? = (e e, 117
We get smooth orthonormal vector fields ey, - - - , e, on U,. Letef, - e* € Q(U,)
be the dual of {e;}.
Setw, :=¢ef A+ AekeQU,).
Now suppose we have another chart (Us,y', -+ ,y") v~ eg = € A -+ A ek

Then Vp € U, n Ug, {eip},{e;,} are both oriented orthogonormal basis of
(TpM, gp).
Then there exists A € SO(n) s.t.

el7p el,p
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Then

* /%
€1p €1p

. _ AT

% /%
Cnp Cnp

/% I __ TN % * _
Soef, A ner =det(AV)ef , A Ael = Wayp = W
Therefore, wa|v,~v; = Walv,nu,- SO {wa} induces a unique Vol € Q"(M) s.t.

V01|Ua = Wy L]

Remark 6.20. In this proof, we know that the wedge product of orthogonormal

basis at any point are all the same except signs.

Proposition 6.21 (Calculation of volume form in local chart). In a local chart

(U,zt,---,a"), glu = Z gi;dz" ® da?, then

1<i,j<n
Vol = 4/det(g;;)dz' A -+ A dz” (6.6)

ozt ey

Proof. If : |=A] |, where A: U — GL,(R).
oxr" en
e} dz!

Then | : |=4T] : |=

er dz"”

Vol = e} A+ Aed =det(AT)dz! A - A da”™ = 4/det(gij)dz’ A - A da”
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The final equality is because

ox 1 (1
(9i5) = ((7:61 axn) =4 <e1 en> AT = AAT
5x" €n
g g
The multiplication of matrix is defined by the Riemannian metric (—, —) O

9p

Example 6.22. For w, € Q" !(R") defined by

WO,z(Ula T 7UTL71) = det(l‘,vl, e Jvnfl)

e~

Then wy . (0x', -, 0xk, .-+  0x™) = (—1)"'z". So

And we have wy|gn—1 = Volgn-1.

Proof. For x € S"~, pick an orthogonormal basis (eg, - - ,e,) for T,S" ! ~ 2t <
R™. Then (z,eq, - ,e,) is an oriented orthonormal basis for R"

Then wy (€2, - ,e,) = det(z, €2, -+ ,e,) = 1. So (wolgn-1), = €5 A -~ Ael =
(Volgn-1),.. SO wp|gn-1 = Volgn-1 O

Remark 6.23. In this example, we see that it is usual to view the differential n-
form as the anti-symmetric map 7™M — R and it is uniquely determined by the

image of the orthogonormal basis of tangent space.

wo is not closed since dwy = ndz! A --- A dz™.
Actually, there is no closed w € Q" '(R") s.t. w|gn-1 = Volgn-1, since
Vol(S™71) > ObutJ w|gn-1 = J dw = 0.
Snfl n

However, there exists w; € Q"1 (R"\{0}) s.t. dw; = 0. wy|gn—1 = Volgn-1.
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Indeed, for v : R"\{0} — S"1 z — |‘£—|, let w; = v*(Volgn-1). Then dw; = 0,

w1|5n71 = VOISnfl.

Exercise 6.24.

1 -
wy = Z(—l)’_lwxidxl Ao Andeg A Ada”
i=1

6.5 Orientability of RP"!

Define the A : R" — R", 2 +> —x, A|gn—1 : S"t — S"~1. Then

(A*(wo))x (‘/27 o 7Vn) = w0,71<_‘/27 R _Vn)
= det(—z,—Va, -+, V)
6.7)
= (=1)"det(x, Vo, -+, V)

= (_1)nw0,x(‘/27 T 7VTL>

Therefore, A*wy = (—1)"wy = (A

Snfl)* (VO].S'VLfl) = (—1)"V015n—1.
® Ifniseven, (A|g-1)" (Volgn-1) = Volgn-1.
Define RP" ™' = S"7!/,_4,. Then Volg.—1 induces a nowhere vanishing form

w e Q" L(RP"!) if n is even. So RP"! is orientable, w is the volume form Volgpn-1

Proposition 6.25. We have the identification:

RP' = ST RP? =~ SO(3) = {(u,v) € R?® x R*|ulw, |u| = |v] = 1}

@ If nis odd, (A|gn-1)*(Vol|gn-1) = —Vol|gn-1. We claim that
Proposition 6.26. RP"~! is unorientable for n odd.

Proof. Suppose RP"! is orientable. Then 3 nowhere vanishing orientation form
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W' e QU 1(RP"1). Define

q: gt Rprt

v 2]

Then ¢*(w') = fVolgn-1 € Q"7 1(S" 1) for f € C*(S™ ') nowhere vanishing.
By go A =q, A*(¢*(w')) = ¢*(w') = A*(fVolgn-1) = fVolgn-1. Then

(fo A)- A*(Volgn-1) = fVolgn1 = fo A= —f 6.8)
So f(—z) = —f(z), Vo € S""'. = f can’t be nowhere vanshing, which causes
contradiction! n

Theorem 6.27. RP" is orientable iff n is odd.

6.6 Tensor Field and Lie Derivative

For M smooth manifold, a,n € N.
a, b)-tensor field is a smooth section 7 of [ ) TM | X) | X T*M > .
a b

a, b)-tensor field is called covariant tensor field if a = 0.

A

A (a,b
A (a,b)-tensor field is called contravariant tensor field if b = 0.
A (a,b

)
)
)
)

a, b)-tensor field is called mixed tensor field if a # 0,b # 0.
Under local chart (U, z!, - -+ ,2"), a (a, b)-tensor field 7 can be written as
o= ), T ®---@dtedd - @d (6.9)

1<j1<---<jb<n
1<ii<<ig<n

Example 6.28.
(1) feC®(M)isa (0,0)-tensor field.
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(2) Vector field is a (1, 0)-tensor field.
(3) k-form is an anti-symmetric (0, k)-tensor field.
(4) A Riemannian metric is a symmetric (0, 2)-tensor field.

Given vector field X, (a,b)-tensor field 7, one can define the Lie derivative
Lx7 be a (a,b)-tensor field.

We focus on the case a = 0, i.e. covariant vector field. (Indeed, we have
defined the Lie derivative for the contravariant field when b = 0)

Forpe M, {¢:: U — M},e(—c.) local flow for X. Define Lx7 as follows:

For X e I'(T'M), pi5 : T,M — T,y M induces ¢} : T7 M — TM and
oF @ T3 M — §b<) TrM
Since 7, () € @ oM, Ty € @T*M define
(£x7), = lim w (6.10)
Equivalently, Lx 7|y = lim w
Lemma 6.29. X, 7 smooth = L x 1 smooth.
Proof. See Lee’s Book O

Lx7 describes the change of 7 under the (local) flow generated by X.

For simplicity, let’s assume X is complete. Let ¢, : M — M be the global flow
for X. We say a covariant tensor field 7 € I’ <® T*M ) is invariant under ¢; or
invariant under X if ¢} (1) = 7.

Proposition 6.30.

68



e 7 is invariant under X if and only if LxT = 0

d
® &‘Pf(T”t:O = LxT

Proof. The second part and the necessary of the first part is direct from the defini-
tion.

We only prove the sufficiency for the first part. Assume Lx7 = 0.

Consider the map R ER §b<) T3 M, t— of (Tpy(p))-

Then Vty € R, f(t) = ¢ (0} 1, (Tpu(p)))- SO

df (i) ’ — lim 90;:0 (90:7&) (7—% (P))) B (p;ko (T‘Pto (p))
dt t=to t—to t— to
s=t—tg * 1 90: (Tsos(soto (p))) B T‘Pto (p)
Pto \ {1 5 (6.11)
= 90?0 (EXT)%O(IJ)
=0
]

Definition 6.31. Given Riemannian manifold (), g), a vector field X is called a
Killing vector field if Lxg = 0. Or equivalently, the flow generated by X is an

isometry.

Example 6.32.

{Killing vector field on (5%, gs2)} = s0(3)

= Span (zdy — yox,ydz — z0y, z0x — x0z)

Lemma 6.33.
(1) Lx(wnan)=LxwArn+wnALxn
(2) ﬁx(dw> = d(ﬁxw)
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Proof. (1)

OF (W AN pip) — (WA M)y

(Lx(w A 7)), =lim

t—0 t
_ i P W) A (o) — (W) A 1o + PF (Wu) A Tlp — Wp A Tl
t—0 t
. 9F (Wei () — Wp . 0 (Mou() = Mp
ST A e ) A Iy T

= (‘C.Xw)p A np + wp A (’CXT])p

(6.12)
2)
t—0 t
o dp(w) ~w)
t—0 t
* —_
—d <lim gprlw) —w “’)
t—0 t
= d,CX(W)
O
Given X € I'(T M), define contraction X |, — : Q*(M) — Q*1(M) by
(X, @) (Yo, ,Yy) = (X, Vs, ;) for Ya, -+, Yy € D(T'M)
Often abbreviated to tx : Q¥(M) — QF1(M).
Example 6.34. X = fox', a = gdz™* A --- A dz'. Then
07 Z¢{Zlaaln}
r, o= (6.13)

(—1)F 1 fgdait A - A dzik A - A dain, i =i,
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Theorem 6.35 (Cartan’s Magical Formula). Lx(w) = X | dw + d(X |, w). Also
written as

Lx(w) =tx(dw) + d(txw)

Proof. Need to show (Lxw), = (X , (dw)), + (d(X , w)),,.
For X,, # 0. By canonical form theorem 4.1, there exists local chart around p
S.t. X‘U = &‘xl.

Letw = > f7%da"™ A+ A da™. By linearity we may assume w =
I<ip<-<in<n
fdz™ Ao A X < < g

Fori; =1,

spt(l'lv"' 7In):($1+t,"' ’xn)

oz’

X dw= - (Z Of.dxj/\dx“A---/\d:L‘i’“>

0 . ) .
€1y _ g —f. da? Adax? A - A da'
o
JE{i1, ik}

(X ,w) (€13 fdz®2 A - A da
Then
Of i i i
d(X |, w) Z mdxj/\daﬁ/\--w\dxk
J#{iz, ik} v
So
af 1 i2 i
(AX ,w)+ X w), = @dx Ada? A AT = (Lxw),
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For the case i; # 1,

’ ox' 1<j<n
(6.13) %d oA A datF
(X, w) =0
Thus,
of 1 i i
(AX,w)+ X, w), = %dx Aendat = (Lxw),

Now we consider the case that X, = 0. For p € Supp(X), it is true using
continuity. If p ¢ Supp(X), then 3 neighborhood U of p s.t. X|y = 0. So the two

sides of the equation equals 0. O

6.6.1 Divergence of vector fields

Definition 6.36. For Riemannian metric space (M, g), X € I'(T'M). Define divX €
C*(M) by
d(txVol) = div(X)Vol (6.14)

Then by Cartan’s formula,
Lx Vol = d(txVol) = div(X)Vol (6.15)
Let p; : U — M be the flow for X.

d )
agpf(\/ol)h:to = goz‘o(ﬁx\/ol) = goz‘o(dle - Vol) (6.16)
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If D is an integration domain of M, a small ball for example. Then define

Vol(D) = JD Vol (6.17)

Now Vol(¢:(D)) = S(MD) Vol = { ¢ (Vol).

Lol (D)) = JD % (div X Vol)

dt
= J divXVol
we(D)

If divX|, > 0 for all p, then ¢; is volume increasing. If div.X|, = 0 for all p, then

(6.18)

¢y is volume preserving. If div.X|, < 0 for all p, then ¢, is volume decreasing.

6.6.2 Hamiltonian vector fields on symplectic manifolds

A symplectic structure on M is a 2-form w € Q*(M), called symplectic form

s.t. (1) dw = 0 (2) w is non-degenerate everywhere. i.e. For Vv e T,M # 0, there

exists w € T, M such that w(v, w) # 0, w" %"

nowhere vanishing equivalently.

Example 6.37. For M = T*N, we have a canonical form « € Q'(M) defined as
follows:

VpeTyN < M, v e T,M, it induces a canonical map 7 : M — N,p — q. Then
its pullback 7, : T,M — T,N,v — m,v induces a,(v) = p(m.(v)) € R.

Then w = da is a canonical symplectic structure on 7*N.

Proof. Take local chart (U, z*,--- ,2") of N,
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i ~ open

U z y U < R

pen

Mo>T*U —= 5 T*U >~ x R" & R2"
Y ipde’ —— (@lg), -+ ,a"(@),prye o pa)
=1

Then o = anpidxi, w = Zn: dp; A dz'.

i=1 i=1
w" =nldp; Adxy Adpy Aday Ao Adp, Adx,
So w is non-degenerate everywhere. O
Definition 6.38. For (M,w) symplectic, f € C*®(M), df € Q'(M). w is non-
degenerate everywhere. Define
vw:D(TM)->T(T*M), X — i1xw (6.19)

Define the Hamiltonian vector field X; by .x,w = df. The flow generated by

Xy is called the Hamiltonian flow ¢ : U — M.

By Cartan’s formula
Lx,w=1x,dw+d(tx,w) =d(df) =0 (6.20)

So the symplectic form is preserved under the Hamiltonian flow.
The motivation to study Hamiltonian flow is that in classical mechanics, N =

R", M = T*N = R" x R” configuration space. The movement of a system of m
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partial is given by v : R — M, ~ satisfies the Hamiltonian equation

7/(75) = XH|v(t)

where H : M — R is the Hamiltonian. ie. vy is an integral curve of the

Hamiltonian flow.

6.7 Frobenius Theorem

The motivation is to solve the PDE equation for f : U — R such that

0
Y s )
iy (6.21)
@ = 5(1’,?/, f(xa y))
where initial value is f(z¢, yo) = 2o.
Consider vector fields on R3, X, = i + a(x,y, Z)i,XQ -2 Blx,y,z)=—.
ox 0z oy 0z

Then f is a solution iff N : graph(f) = {(x,vy, f(x,y))} — R satisfies (z¢, yo, 20) €
N, T,N = Span(Xj ,, Xa,).

Definition 6.39. M" is a smooth manifold. A k-dimensional tangent distribution

D is a k-dimensional linear subspace D, c T,M ateachpe M s.t. D = |_| D, is

peM
a smooth subbundle of T M.

Equivalently, this means for any p € M, there exists a neighborhood U of p,
and smooth vector fields Y3,--- , Y, on U s.t. D, = Span (Y4, -+, Yi,), Vg e U.

An immersed submanifold ¢ : N ¢ M is called an integral manifold for D
if Vg e N, p.(TyuN) = Dy Identify N with ¢(V) to simplify notation, It can be
abbreviated as T, N = D,,
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Example 6.40. Every nowhere vanishing vector field is a 1-dimensional distribu-

tion, and the integral curve of it is the integral manifold.

Example 6.41. For M = T? = R x R/z,3, D = Span(i). Then the integral
5 ox

or

{ly, z]ly —yo = v2(x — )} is an immersed but not embedding submanifold dense

submanifold is S* x {y}. For D = Span(=— + V2 + ;), integral submanifold
)

in T2.

. 0 0 ) .
Example 6.42. M/ = R", D = Span {ﬁ’ e ’ﬁ} has integral manifold N =

R* x {c}, ce R"7*.
Example 6.43. M = R™\{0}, D, = p* is an n — 1 dimensional distribution with

integral submanifold N = S~ ! = {x: |x| = r}.

Example 6.44. M = R3, D = Span{i 0 0

+y—=—, = - We claim that D has no
ox 0z 0y

integral submanifold.

Proof of the Claim. Let N be an integral submanifold, (0,0,0) € N. v : (—¢,¢) —
R", ¢+ (t,0,0) is an integral curve for X; = 2. So (z,0,0) € N, for z € (—¢,¢).
Letn: (—¢',¢') > R® ¢ — (z,t,0) be an integral curve for X, = (9iy starting at
(x,0,0). So for (x,y,0) € N for z € (—¢,¢),y € (—€,&').
That implies that N contains X — Y plane near (0,0,0) but now T,N =

0 0
Span{a—x,@} # D, O

Remark 6.45. This example shows that a distribution doesn’t have integral man-
ifold always. This property that have integral manifold implies something more
than linearity, or in some sense, it should be closed under the action by local flows
in that case.

Here we introduce Frobenius theorem to explain it.

Definition 6.46. Let D be a k-dimensional distribution on M.
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We say a chart (U, ¢) on M is flat for D if o(U) is a product of connected open
sets U/ x U” = R* x R"*, and at points of U, D is spanned by the first k coordinate

. 0 0
vector fields IR

(1) We say D is involutive if for any open U — M, any smooth sections X,Y e

I'(D|y), we have [ X,Y] e I'(D|y).

(2) We say D is integrable for any p € M, there exists an integral submanifold

N forD st.pe N

(3) We say D is completely integrable if Vp € M, there exists local chart
d } ie. There

" Oxk

exists a flat chart for D in a neighborhood of every point of M.

(Usal,---,a") around p st Dly = Span{%"'

Theorem 6.47 (Local Frobenius). Those definitions above is equivalent.

Proof. Completely integrable = Integrable: In U, all submanifolds of the form
R* x {c} are integral submanifold for D.

Integrable = Involutive: For X,Y € I'(D), pe M. Let. : N & M be integral
submanifold s.t. p € N.

Then [X,Y]|, = [X|~,Y|n], € T,N = D,, since X,Y is t-related to X|y,Y |y
resepectively. So [ X, Y] e I'(D).

Involutive = Completely integrable. Vp € M, take local chart (V,y*, -, y").
WLOG, y(p) = 0. Then 7w = (y',--- ,4*) : V. — R* p — 0. It induces 7 . : T,V —

TpoRF = RE.
Since D, has dimension k, by shrinking V', and reordering the coordinate such
0 ~
that D, is disjoint with S ki1 gy Wemay assume Tgx|p, : Dy = R¥, Vg e V.

Consider 0y’ € I'(TR¥), 1 < i < k. Let X; be the unique section of Dy, s.t.
7.(X;) = 0y'. X; e ['(D|y) = I(TM). Then 0y’ is 7-related to X;.
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Then 0 = [0y', 0y’] is m-related to [X;, X;]. So m.[X;, X;], = 0,Vqg € V =
[Xi, X;],=0,VYqeV.

Thus, we obtain linear independent vector fields with [ X;, X;| = 0,7 # j.

By canonical form of commuting vector fields 4.11, there exists local charts

(U, zt,-- ,2") st. X; = 02,1 <i<k.SoD|y = Span{dz?, - ,0x"} O

Remark 6.48. Indeed, completely integrable means an embedding locally. So we
can find an embedding integrable manifold locally for immersed integrable man-

ifold.

Lemma 6.49. Let D be a k-dimensional distribution. Then D is involutive iff there exists
an open cover U, YU € U, 3Xy,--- , Xy € I(TU) s.t. D|y = Span{Xy,---, Xy} and
[Xi, X;] € D(D[v)

Proof. "="is followed by the definition.
"<" Just need to show D|y is involutive for each U.

VX,Y eT(Dly), X =) f'X;,Y = > ¢'X;, fi,g' : U — R. Then

=1 i=1

[X, Y] =) Fo[X, X5+ D FXulg) X = ) ¢ X5()) X e T(D) (6.22)
%,] %] ©,]
O
((;_f = a(z,y, f(z,y)) ,
Corollary 6.50. 8? ,f(z0,y0) = 2o has local solution for
a_y = 6(1',:% f(‘rv y))

V(l’()a?/o, Zo) Zﬁ
oo oo 0p op

e T W e
: >f _ f
Proof. = is because of edy  oyon
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"<" Consider D = Span{a% + aa—az, a—‘; +p a%} 2 dimensional distribution on R3.

[%—Fa&va_y—f_ﬁg]

- t«o
ox oz 0y 0z

0 o 0 0 <(95 0B oo 6@) 0
So D is involutive = V(z, yo, 20), IN > R* s.t. (2o, v0,20) € N, N is an integrable
manifold of D.

N ¢ R 222700, R2 5¢ 5 submersion. So N can be locally written as

(@, y, f(z,y)) for f: U - R O

A k-dimensional foliation is a decomposition M = U N, s.t. (1) Each N,
is an injective immersed k-dimensional submanifold. (Z)SVp e M, 3 local chart

(U,zt,--- ,2") st.Vse S, NynU =RF x A,. A, is a countable subset of R"~*.
Example 6.51. T2 = | | N, N, = R — T2, t — (o + £, v/2t)

Theorem 6.52 (Global Frobenius). D is an involutive k-dimensional distribution =
D induces a k-dimensional foliation M = U N such that each N, is a maximal integral

submanifold of D. )

7 de-Rham Cohomology

7.1 Basic Definition

A cochain complex over Z is a graded abelian group C' = (X) C" with a deg-1
beZ

map d = (X) (4" : C" — C™*') s.t. d* = 0.
d is called differential or boundary map
The k-th homology
ker(d® : C* — Ck*1)

k .
H*(C,d) := S CEeEe (7.1)
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The denominator is the set of k-boundary. The numerator is the set of k-cycles

Example 7.1. = (X) Q" (M) is homology equipped with the exterior dif-
nez

ferential d. And
HY(CHp(M),d) = Hpyp =~ H*(M;R) (7.2)

where H*(M;R) is the singular cohomology.

Given cochain complexed (A,d4), (B,dg), a chainmap f : (A,d4) — (B,dp)
is a degree 0( i.e. f(A") c B™) group homomorphism s.t. dgo f = foda.
If fis a chain map, then f maps k-cycles to k-cycles and k-boundariise to k-

boundaries. So f induces f* : H*(A,d4) — H*(B,dp).
Example 7.2. f :€ C*°(M,N) = f* : Q¥(N) — QF(M) induces a chain map f* :
CHr(N) = Chr(M) = f*: Hjz(N) — Hfy z(M) satisfies (fog)* = g* o f*, (id)* =
id
Given chain maps f,g : (A,d4) — (B,dg), a chain homotopy from f to gis a
deg-(-1)map s : A - B s.t. dgs +dds = f — g. In this case we write f ~ g.
Ak—1 s AR N Lan
glf / glf / glf

k—1 . Rk . pk+l
B > B > B

Lemma 7.3. If f = g, then f* = g*H*(A,d4) — H*(B,dp)

Proof. Take [a] € H*(A,da), dea = 0. Then f(a) — g(a) = dg(sa) + s(daa) =
dp(sa) € Imdg. So f*[a] = g*[g]. O

Definition 7.4. Given themap f : (4,d4) — (B,dg), wesay f is a chain homotopy
equivalenceif 3¢ : (B,dp) — (A,d4) s.t. gof ~idy, fog ~ idg. We call such g the
chain homotopy inverse of f. And we say (4,d4), (B, dp) are chain homotopic,

denoted as (A, d,) L (B,dp).
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Corollary 7.5. If (A,da) L (B,dp), then f*: H*(A,dax) — H*(B,dp) is an isomor-

phism.

Proof. Letg: (B,dg) — (A, da) be the chain homotopy inverse of f. Then g*o f* =

idgx(a,a,), [* 09" =idy+pay). So f* is an isomorphism. ]

Recall that given smooth manifold M (with boundary), define Cj,(M) =
QR Q(M), d: (M) — QT (M) the exterior derivative, Hjp(M) = H*(Cyp, d).
€7

fe C*(M,N)— chain map f* : Cqr(N) — Car(M),a — f*(a) — induced
map [* : Hijp(N) — Hip(M).

Theorem 7.6. Given f,g: C*(M,N). Then f ~ g = f* ~ g* : Cip(N) — Cir(M).
Hence, f* = g* : Hjs(N) — H;r(M) by Corollary 7.5

We will use the Whitney approximation theorem over manifolds.

Theorem 7.7 (Whitney Approximation Theorem). Given M, N smooth manifolds.
Given embedded submanifold L — M. Given a continuous map f : M — N s.t.
flo : L — N is smooth. Then there is a homotopy H from f to g related to L s.t.
g: M — N issmooth, g|;, = f|L-

7.2 Integration along Fibers

For F' compact oriented smooth manifold possibly with boundary, dim F' = [.
M is an n-dimensional smooth manifold possibly with boundaries.

Our goal is to define §,, — : Q*(F x M) — Q* /(M) s.t. when ! = x, this map
§ : Q(F) — Ris the usual integration.

Now take a € QF(F x M), we will define §, a € Q¥ /(M) step by step.

Case i: If 3 chart (U, 2,--- ,2") for M s.t. Supp(a) < V x U and 3 oriented
chart (V,t',--- ) for F. Then
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a= > aydt' nda’ ar e C7(V x UR) (7.3)

IC{L 7l}
Jc{1,-- ,m}
H[+]J|=k

If [y ={1,---,1}, define

J Oé]OJdtIO U —->R
F

p— :OéIOJ’FX{p}dtl /\"'dtl
Fx{p}

Now define

L a= > <L aIO,Jdtfo) -da! e QF (M) (7.4)

Jef1, m}
| J|=k—1

It can be generalized to all o and easy the check it is independent with the choice
of chart.

Case ii: 3 local chart (U, 2!, - ,2") for M s.t. Supp(a) = F x U. Take an
oriented atlas V = {(V;, ¥i)}1<i<n for F, and partition of unity p; : I — [0,1]
subordinate to V. Let p; be composition F x M % F 25 [0,1]. Then Supp(pi..) ©
V; x U. We define {, o = Z L(ﬁia). Easy to check it is independent with the
choice of U, V, {p;}. e

Case iii: For a general a € QF(F x M), take an atlas U = {U;,v;}ier of M
and partition of unity 7, : M — [0, 1] subordinate to ¢/. Let 7; be composition
FxM2% M5 0,1].

Then Supp(T;a) < F x U;. Define §, a = ZL(%&). Easy to check it is inde-

el

pendent with the choice of U, {7;}.

Remark 7.8. 7 : E — M proper submersion. One theorem tells us that 7 is exactly
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a smooth fiber with compact fiber F' = 7~ !(«). For instance, the Hopf map

71 8% 5 82 (21,2) €C2 > L eC U {0}

<2

is a smooth fiber with compact fiber.

Then we can generalize above constrution and define m; = §,— : Q*(E) —
Q*—dim(F) (M)
Remark 7.9. If also works if F' is not compact,

f L QF (F x M) — 9 (M) (7.5)
F
Projection

where QF o (F x M) = {a € Q*(F x M)|Supp(a) ——— M is proper}, viewed as

the set of forms with compact fiber.

Theorem 7.10. F is compact, then for any o € QF(F x M), we have

A([ o)+ [ @) = [ t@loran 76)

For the special case M = «, SF da = Sa » 0|or is exactly the stokes theorem.
For the special case F' = [0,1],d ({, a) + §,(da) = §,, aliyxmr — §,; @l oy
We prove only this.

By partition of unity and linearity, we may assume Supp(a) < [0,1] x U for

some chart (U, z!, -+, 2™) of M.
a = Z ayda’ + Z oydtt A da’ (7.7)
Je{1,,m) Je{1,,m)
I71=Fk |J|=k—1

By linearity agian, we may assume o = a;dz”’ or v = a;dt A dJ.
5()4J

For a = aydt A dJ, we have §,a = 0,d({,a) = 0. do = = dt A da’ +
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Z 2OU dz A dz’. Then

1<ig<m

o
f da = (J a—Jdt) dZEJ = OéJ|{1}XM'dIJ—OéJ|{0}XMdZEJ = Oé|{1}><M—Oé|{Q}XM (78)
F 0

Sod (SF O‘) + SF(dO‘) = SMO‘|{1}W\/1 - SMO‘|{0}XM'
For oo = a;dt A da’, o = <Sé cwdt) dz’,

J ' i J day i J
dJFOz = Z 30 (L Ogdt) dz' A dx? = 1<;m (L pae 0dt> dz" A dx” (7.9)

1<ip<m

da = — K;m g;ﬂdt A dz A dx’! (7.10)
&on i J
Songaz— —dt dz™ A dz’. Henced {, o+ §,da=0=0-0.

1<io<m
Proof of Theorem 7.6. Let H : [0,1] x M — N be a homotopy from f to g. By
Whitney approximation theorem 7.7, we may assume / is a smooth map. Define

s QHN) - Q1 (M), s(a) = §, H*(0). H*(r) € Q*(I x M). Then

(ds + sd)a — d L Ha + LH*(da)

4 f[ Ha + Ld]—]*(a) o

= H*Oé|{1}xM - H*OC‘{O}XM
=g"(@) = [*()
So s is a chain homotopy between f*, g* : Cijz(N) — Cir(M). O

Corollary 7.11. f € C*(M,N), f is a homotopy equivalence = f* : Hjz(N) —

Hp(M) is an isomorphism.
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0 k>0
Corollary 7.12 (Poincére Lemma). H%,(R") = . 1.e. Any closed k-form

R k=0

on R™ with k > 0 is exact.

Proof. Take constant ¢ : R = x being a homotopy equivalence

Then c¢* : Hip(point) — H%,(R") is an isomorphism. But QF(point) =

R k=0
. So
0 k>0
R k=0
H*(R™) = HE,(point) ~
0 £>0
0
7.3 Mayer-Vietoris sequence
7.3.1 Some algebraic constructions
A sequence of maps between groups --- — G;_4 T, G LN Giz1 — -+ is

exact at G; if ker(f;) = Im(f,—1). We say the sequence is exact if it is exact at every
G;.

A short exact is an exact sequence of the form 0 — G, 4, Gy L Gy — 0. e
f is injective, g is surjective and ker(f) = Im(g).

A short exact sequence of cochain complexed is a sequence 0 — A* SN LN
C* — 0 where A*, B* C® are cochain complexes, f, g are cochain maps, and Vk,

the sequence 0 — A% £ B¥ % C* —, 0 is exact.
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0 —— AL L opk=1 9 okl 4

Given short exact sequence of cochain complexed 0 — A* LB 4o,
we define a boundary map 0 : H*(C*) — H*"1(A*) as follows:

Take any [co] € H*(C*), ¢g € C*, dey = 0. g is surjective so 3by € B* s.t.
9(b) = co, and g(dbo) = deo = 0. So Jag € A1 s.t. f(ay) = dbo, f(dag) = df (o) =

d?by = 0. Since f is injective, dag = 0. Set [co] = [ao].

bo—>C()

Lo

CL0—>db0L>O

Lo

dag —— 0

Lemma 7.13. 0 : H*(C*) — H**(A*) is well-defined
Proof. 1f we choose another b; s.t. g(by) = g(by) = ¢o. Then
g(bg — bl) =0= b() — bl = f(ag) for some a9 € Ak

= dbo — db1 = df(ag) = f(d(lg)

f(ag) = dbo, f(a1) = dby = f(ag — a1) = dby — db; = f(day)

=>(l0—(11=d(12
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= [ag] = [a1] € H"(A*)

If we choose c¢; with [c1] = [co] € H¥(C*). Then 3¢y, € Ck1 st ¢; = ¢ + deo.
Take any by € B*! s.t. g(by) = 2. Then g(dby) = deg = ¢; — ¢o. Pick by s.t.
g(by) = co = g(bp + dby) = ¢1. So we may pick by = by + dbe. Then db; = dby =

a; = ag. O
0

Lemma 7.14 (Snake Lemma). Given short exact sequence of cochain complexed 0 —

A* LB 9 0% 0, the sequence
Hk+1(0*> g* Hk+1(B>x<) f* Hk:+1(A*) (j
0
- HH(CY) L 1R L m (A7) )
P

L HF1(C%) L H*1(B*) I HE1(A%) (j

. y I

is exact For simplicity, short exact sequence of cochain complexes induces long exact se-

quence on homotopy.

Proof. Exactness at H*(B*): go f = 0= g* o f* = 0 = Imf < ker g*.

Take any [b] € kerg*, b € B*, db = 0, then [g(b)] = ¢*([b]) = 0. So ¢(b) € Imd
ie. 3ce C* 1 st de= g(b).

Pick b’ € B*! st g(b') = c. Then [b] = [b—dV]. g(b—db) = 0= Ja s.t.
fla) =b—dl. f(da) = 0= da = 0. Then f*(a) = [b — db] = [b]. So ker g* < Im f*.

Exactness at H*(C*): If [¢y] < ker(?). Then [ag] = 0 € H*1(A*) ie. Jay e A*
s.t. ag = day. Set by = by — f(as). Then dby = dby — f(ag) = 0. So [by] € H*(B*),

g(ba) = g(bo) = co. So [co] = g*([b2]) € Img*.
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If [co] € Im(g*), then 3[b] € H*(B*) s.t. g*[b] = [co]. Set ¢ = g(b), by = b.
Then [¢;] = [¢]. Then dby = 0. So a; = 0 = J[c1] = J[c] = [a1] = 0. Then
Im(g*) < ker(0).

Exactness at O

Now we consider M = U; u U, for Uy, U, open subsets. The inclusion maps

are iy, 12, Ji, Jo-

UlmUQ
PN
U1 U2
M

(F.03)

Lemma 7.15. The sequence 0 — Q*(M) ——= Q*(U;) @ Q*(Us) Ht, Q*(Uy n

U,) — 0 is exact.

Proof. (j§,73) is injective. v € QF(M). If (j¥, j3)(a) = 0, then |y, = ay, = 0. So
a=0.

Exactness at Q*(U;) @ Q*(Us): If (aq,c0) € ker(if — i%), then aq|y, ~u,
sl ~u,- Seta € Q* (M) s.t. a|y, = a1, aly, = as. Then (aq, ) = (55, jia).

If (ag,00) € Im(57,75). Let oy = aly,, aa = aly,, then (i — i) (a1, a2) =
alu,~vy — auy v, = 0. S0 (o, ag) € ker(if — 73).

s
@4

— 13 is surjective. Take any a5 € Q*(U; n U,). Take a partition of unity
{pi : M — [0,1]}iz12, p1 + p2 = 1, Supp(po) < Ui Then Supp(p;) n Uz = Uy N Us.

So we may define a; € Q*(U;) by

(=) pi(p) -1z, pEUL N U
iy = . (7.12)

0 pe UZ\(Ul M UQ)

Then a1, ~v, — 2|t~y = p1(P)a1s + pa(p)ais = ais. O
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Apply the snake lemma 7.14, we obtain

Theorem 7.16 (Mayer-Vietoris sequence). The sequence

HENU) @ Hip (V) «—— HEY (M) «j

HZ;R(M) ‘—)

E Hi'(UnV) —— Hi'(U)® Hyjp' (V) 0

d

Q HQCR(U nV) HsR(U) @H!;R(V)

d

is exact

Example 7.17. For S" = U n V where
U=5"{(1,0,---,0)},V =5S"{(-=1,0,---,0)},UnV = S"\{(£1,0,---,0)}

UV ~«UnV ~S"" Sothe M.V. sequence

0 —— Hip(S") —— H(x) @ H(x) — = Hip(S") —— Hip(S") —— 0

2\
e}

0 > R > RER —— RAR > R
Then H),(S') = kerd = R, Hip(S*) = cokerd = R.
And for k > 1, the Mayer-sequence
0 —— HE (") —— HM(S") —— 0
implies H%,(S"~!) ~ HYH(S™). Therefore, by induction, we have

e

R n=k

Hip(S")=<{R k=0 (7.13)

| 0 otherwise

89



Example 7.18. For M = CP", U; = M\{[1,0,---,0]}, Uy = M\{[0,*,x,--- =]}

Then
Uy = {[zo, -, zn]|71,- -+, 2, not all zero}
~{[0, 21, -+, @y]|z1, -, z, not all zero}
~ C]P)nfl

U2:M\{[07*7"' 7*]}:{[17*7"' ’*]};Cn
Uy n Uy = Uo\{[1,0,---,0]} = C"\{0} ~ 52!

R keven0<k<2n

Claim. H%,(CP") ~
0 otherwise

Prove the claim by induction. For n = 1, CP' =~ S is true.

Suppose we have proved it for CP"~'. Apply Mayer-Vietoris sequence to M =

Uy v Uy,
Hyg' (571 — Hyp(CP") — Hap(CP"™ 1) @ Hyp(C") — Hop(S*™)  (7.14)
Then for i # 2n — 1, 2n,
0 — H!»(CP") 5 Hp(CP* 1) -0 (7.15)
For 2n —1,2n,
-0 (7.16)

0 = Hi(CP™Y) — H3 ! (5*1) 5 HIR(CP") — HE(CP™)

0 = Hi2(S™) — 3 (CPY) — Hi (P ) = 0
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Remark 7.19. H*(M) is a ring where

[a] - [B] = [a A B] (7.17)

It's graded commutative since
[a] - [8] = (=1)"[8] - [a] for [a] € H*(M), B € H'(M) (7.18)
Any f: M — N induces ring homomorphism f* : Hj,(N) — H}p(M).
Indeed, Hj,(CP") = R[z]/x""!), where = generates Hj,(CP").

Proposition 7.20. A & R” closed. Then
HAEHR™IN {0} x A) =~ Hip(R™A), i >0 (7.19)

Hip (R0} x A) = HIL(R™A)/r1 (7.20)
Proof. R™™\{0} x A = U; u U, where
Uy = (R xR") U ([0,1) x (RM\A))

Us = (Rog x R™) U ((—1,0] x (R™\A))

UynU;=(—1,1) x (R" x A)

Then there exists a deformation retraction [0, 1] x Uy — Uy, (¢, (g, 21, ,2,)) —
(twog + (1 —t)(—=1), 21, - ,x,). Then Uy = {—1} x R* ~ . Uy ~ », Uy n Uy ~ RM\A.

The Mayer-Vietoris sequence gives

i i i 0 i n i i
Hip(Ur)® Hig(Uz) — Hip(UinUs) — Hdﬂl(R H\{O} x A) — HdEI(Ul)GaHdEl(Uﬁ

~

for: > 0.
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The case 7 = ( is similar. O

e

Lemma 7.21. A ¢ R™, B < R" closed, f : A = B. Then R**"™\{0} x B
R\ {(z, f(2))]x € A} = R"™A x {0},

Proof. A % B — R". By Tietz extension theorem, there exists f:iR™ >R st
fla=f.

Consider f : R™ x R" = R™ x R", (z,y) — (z.y + f(z)). Then f(A x {0}) =
{(z, f(z))|x e A} = R"™™\{0} x B = R""™\{(z, f(z))|lx € A} = R"™\A x {0}. O

Special case, if A, B < R" closed, A =~ B, then R*"\A x {0} =~ R*"\B x {0}.
It directly follows that

Theorem 7.22. A, B < R" closed, A =~ B under homeomorphism. = H},(R™A) =
Hip(R™\B).

Proof. By proposition 7.20

Hip(RMA) = Hig"(R*MA x {0}) = Hii"(R*™\B x {0}) = H*(R™\B)

Example 7.23. A knot is an embedded S' — R3. So V knot K,

| | R i=0,1,2
H!p(RI\K) =~ Hjp(R*\circle) =~ (7.21)

0 otherwise

Corollary 7.24. A < R" closed, A ~ S"~! = R™\ A has two components Uy, Uy where
U, is bounded and U, is unbounded. Moreover, 0U, = 0U; = A.

Proof. HIR(R™MA) =~ HI(R™S") =~ R (my(R™\S" 1)) = R®R.

So R™\ A has two components Uy, Us.
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Take L = max{|z||x € A} + 1,V = {x e R*||z| > L}. V < R™\ A connected and
unbounded. V' < U; so U; is unbounded = U, < R™\V is unbounded.

The proof of 0U; = dU, = A is omitted. See Madsen-Trnehave. O
Corollary 7.25. A = R", A ¢ D* = R™\ A is connected.

Theorem 7.26 (Invariance of domain). Let U be an open subset of R". Let f : U —
R™ be continuous and injective map. Then f(U) is also open in R™. And f sends U

homeomorphically to f(U)

Proof. 1t suffices to show f(U) is open. Since for any W < U open, f(W) is open
in f(U). So flu : U — f(U) is open.

Take any zy € U, want to show f(x¢). Take D = {z € R"||x — x| < ¢} < U.
Then X = f(dD) =~ S"'. So R"\X has 2 components Uy, Uy, where U; is bounded
and U is unbounded.

R™ f(D) is connected so R"\f(D) < Us. So Uy u ¥ = R"\U, ¢ f(D) =
f(int(D)) u X = U;  f(int(D)).

Since f(int(D)) is connected, f(int(D)) < U = f(int(D)) = Uy. So f(xg) € Uy <
int f(U). O

Corollary 7.27. If m > n, U < R™ open, then there is no injective continuous map

U—-R"

Proof. If f : U — R™ — R™. Then f(U) not open in R™, which causes contradic-

tion. 0

Corollary 7.28. U c R™, V c R™open. U =V = m = n.

7.4 Compact supported de Rham cohomology
Define Hjy (M) = H*(Q°(M) + Q' (M) + - - - ), abbreviated to H(M).
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If M is compact, then Hj, (M) =~ Hjp(M). But it is not true for M not com-

pact. The following is a counterexample.

Theorem 7.29. Let M be connected and oriented n-dimentional manifold without bound-
ary. Then the map H*(M) = R, [a] — §,, o is a well-defined isomorphism. Moreover,

if M is closed and connected, then H}j,(M) =~ R

Remark 7.30. Well-defineness: If [a] = [¢/], then a — o/ = d5. By Stokes theorem
6.12, SM a = SM «

Proposition 7.31. If v € Q}(R"), {,, o« = 0 =33 Q' (R") s.t. df = o

Note thatif « = fdxy A -+ Adx,, B = Z(—l)i_lfidxl NEREIN d/;;l Ao A dag,.

Then o = dBiff f = Z 8fz
So the proposmon is equ1valent toVf e CPR"), (g fdzy A -+ Ada, = 0=
Elflv' o 7fn € CSO<RR>

Prove it by induction. Forn =1, fl =" ft)dt. f1e CP(R), f1 = .

Suppose n is proved, f € C*(R"!), SRW fdzy A - Adape = 0.

Define ¢ € CP(R") by g(z1, - ,z,) = f f(z1, - ,xp11)dxn1. Then
—®

SRngdatlA-"/\dxnz().

By induction, 3 g, -+ , g, € CP(R") s.t. g = Z 692
Take p € CP(R) s.t. J pdz = 0. Define f; : R"™ — Rby fi(z1, -, 2p41) =
-0
gi(z1, -+ 1) - p(xn+1)
Seth = f — Z (3fz Then for V(xy, -+, x,),

0 0 0 n 0 ;
J h(mla e 7$n+1)dxn+1 = f f(xla e >$n+1)_J p(xn+1)d$n+1' (Z %) =0
i=1 """

—00 —00 —00

T+l fn+1 o afz
Set fn+1(331, s 7xn+1) = Sfoo h(I'l, L, Tp, )dt Then P = h and f Z .

Tpt1 ox;
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Corollary 7.32. H"(R") = R, [a] — §,. a is an isomorphism.
Lemma 7.33. Va € Q7(R"), YU < R" open, 35 € Q"1 (R") s.t. Supp(a —dp) c U

Proof. Pick o € Q2(U) < Q2(R") s.t. §, o' = §;, a.
Then 38 € Q7 (R") s.t. a — o/ = dB. So Supp(a — df) = Supp(a/) <= U. O

This lemma tells us every a € H(R) can be restricted to H'(U).

Lemma 7.34. M connected. Given charts Uy 25 R™, Uy 2 R™, ay € QrUy). 36 €
Q=Y (M) s.t. Supp(a; —dB) < Us.

This lemma tells us every n-form with compact support in a chart can be trans-

formed to a n-form with compact support in the next chart.

Proof. We can find charts {V; = R"} ;< s.t. Vi = Uy, Vi = Uy, Vi n Vi # .
By previous lemma, 35, € Q2*(V;) s.t. Supp(a; —dB;) < V; n Vi1 < Va. Define
iy1 = o — dfB; € Q7 (Vig). 1
Then we obtain 5y, -+, 5,-1 s.t. Supp(ay — "Z ds;) < Vi, = Us. O
=1

Proof of Theorem 7.29. We have proved the well-definedness by Stokes formula
and sujevectivity straight forward.

Injevtivity: Given v € Q(M), §,, @ = 0. Using partition of unity, decompose
a=a;+---+a st Supp(e;) compact, Supp(a;) < U; = R™

By previous lemma, V2 < i < k, 38, € Q" Y(M) s.t. Supp(oy; — dB;) < Uy.
k

Then o/ = a—Zdﬁi e Q(Uh). J o = J a=0.
i=2 U1 M

So 3By € Q(Uy) © QX(M) st o/ =dBy. Set = > ;. Thena = dg. O

i=1

Given n-dimensional connected, oriented, closed manifold M, N, f : M — N.

The mapping degree of f is defined by

SN S.M

RE gn(N) L B (M) 2 R, 1 deg(f)
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Equivalently, Vo € Q*(N), we have {,  f*(a) = deg(f) § o

Then deg( f) is invariant under homotopy.

If M = M; u My -+ 1 My, then define deg(f : M — N) Zk:ide
M, — N). e
There is an alternative definition. For f : M — N, take a regular value y
of f, ie. Vxe fYy),fe: TuM — T,N is surjective. Then Vz € f~1(U), 3
neighbourhood U, of z, V, of y s.t. f|y, : U, = V, by inverse function theorem.
In particular, f~!(y) is discrete. M is compact implies that f~!(y) = {z1, - , 24}
1 if f, : T,,M = T,N is orientation preserving

Define local degree deg(f, z;) =
—1 otherwise

Theorem 7.35. Y reqular value y of f, deg(f) = Z deg(f,x) e Z
zef~1(y)

Proof. For f~'(y) = {x1, -+ ,z,}, 3 neighborhood Ui of z;, Viofy s.t. fly, : U =
V;. Let V neighborhood of y s.t. f~! U Us.

Take o € Q"(N) s.t. Supp(a) < Vﬂ ﬂ i), Yy« # 0, then Supp(f*a) <
fﬁl(V) = UUI

1=

§ar f¥(a J ]‘?Oé—zzdegf,atZ Jasince
deg(f,x;) = 1 < f|y, is oreientation preserving < f frfa = J a = J Q@
U; Vi N

deg(f,x;) = —1 < f|y, is oreientation reversing < J ffa= —J a = —J o'
U; v; N

k
So deg(f) = Y, deg(f, ;). O
Corollary 7.36. If f is not surjective (after homotopy) then deg(f) = 0
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For X € I'(T'M), p € M is an isolated singular point. Then 3 open U % R™ p
Oofp s.t. X, # 0Vq € U\{p}. Define the local index of X at p by

px(X0)

(X.p) = deg (W!@

LS sn—1> €z

where ¢, (X|y) € [(R") = C*(R",R™) maps 0 to 0.
Example 7.37. M = R?, X = xdz + ydy. Then (X,0) = 1.

Theorem 7.38 (Poincare-Hopf). Let M be oriented closed manifold. X vector field with
only isolated singularity. Then Z (X,p) = x(M) is the Euler characteristic of M,

{plX,=0}
dim(M)
ie. > (=1)*by, by = dimp Hjp(M).
k=0

Theorem 7.39 (Poincédre duality theorem). M is oriented n-dimensional manifold
withour boundary. Then the bilinear map H*(M) x H* *(M) — R,([«],[8]) —
§oo A Binduces Dy« HY(M) — (H*(M))™ which is always an isomorphism.

R k=n
Proposition 7.40. H}(R") =

0 k#n

Proof. We have proved for k = n. For k = 0, « € Q%(R"), da = 0 = o = 0.

For 1 < k <n, a e QF(R"), da = 0. We want to find 5 € QF1(R") s.t. a = df.

R" = S™\{c0}. Regard « as an element in Q*(S"), da = 0. H*(S") = 0 =
38 € QF1(S), 4 =

Take open neighborhood U =~ R" of {0} € 8" s.t. aly = 0= d(f'|y) = 0. If
k=1,8ly=C.SetB =75 —C,Bly=0s03e€ QYR"). Ifk > 1, H*"Y(U) = 0
= 3y e QF2(U) s.t. Bly = dv. Extend 7 to 7/ € QF¥2(S™). Set 8 = ' — dv'. Then
Blu =By —dy=0s0Be Q1 (R") and dB = df’ — d*>y = a. O

So we prove that D), is an isomorphism when M = R".
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For U <% V, U,V open in M. The map Q}(U) B, QEV),a — (), =
ap pelU
0 pe¢U

Lemma 7.41. The sequence
0 QU A Uy) 225, 0x () @ QF (Us) 22725 (U  Us) — 0

is exact. Moreover, by snake lemma 7.14, we have M.V. sequence for H}(—):

H*(Uy A Us) — H*(Uy) @ H(Us) — H*(Uy U Us) S HE UL A Us) — - -
Take dual, we get

e (Hf(Ul ng))* - (Hf(Ul))*(-D(Hf(Ug))* - (Hf(U1 f\UQ))* — (Hf+1(U1 ng))* — ...

DUlf\UQT Dy, @DUQT Dy, uUQT Dy, AUZT

e/ H”_k(Ul nUz) +—— H"_k(Ul)(-DH"_k(UQ) — Hn_k(Ul v Us2) %ﬁ ch_k_l(Ul nU3) «— -+

Lemma 7.42. The diagram commutes.

Lemma 7.43 (The five lemma). If the diagram commutes, fi, fa, fa, f5 are isomor-

phisms, then f5 is an isomorphism.

Ay > Ay y As > Ay y As exact
lfl lf2 lfs lf3 lf5
B; > By > Bs > By > B exact
. z
Lemma 7.44. VM, 3 locally finite open cover U = {U, }ie; s.t. VJ < 1, ﬂ U, >~
e R™
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8 Classical Differential Geometry

8.1 The geometry of curves and surfaces

A parametrized curve is a smooth map a : I = (a,b) — R3. {(s) = /(s) is
called the tangent vector at a(s).

A reparametrization of o means (d/, ') = (a,b) 2 R>.

We say « is a regular curve if t(s) # 0, Vs € 1.

We say « is parametrized by its arc length if |t(s)| = 1, Vs € I. (It can be
obtained by reparametrization)

Always assume « is parametrized by its arc length.

Define K (s)= |a(s)| € Rsy, the curvature of « at a(s).

If K(s) # 0, we may define the normal vector n(s) = ?(((s)) . Then 0 =

d (d/(s),a/(s)) = 2(a"(s),a/(s)). = n(s) L t(s). The osculating plane of « at «(s)

ds
is Span (t(s),n(s)). And binormal vector b(s) = t(s) x n(s). Then t(s),n(s), b(s) is

an orthogonormal basis of T,,(sR?. V/(s) = t'(s) x n(s) +¢(s) x n(s) L #(s),b(s). So
b'(s) = 7(s) - n(s) for some 7 : I — R. 7(s) is called the torsion of « at a(s).

-

t'=Kn
Proposition 8.1 (Frenet formula). <,/ = — Kt — 7b
b =1n

Proof. n'(s) = (b(s) x t(s)) = 7(s)n(s) x t(s) + b(s) x (K(s)-n(s)) = —71(s)b(s) —
K (s)t(s). The other two are straight forward. O

Theorem 8.2. Given any smooth function K : I — R., 7 : I — R, there exists a curve
« parametrized by its arc length s s.t. K(s) is its curvature and 7(s) is its torsion. Any
two such curves differ by a rotation and a translation in R®. ie. Vai,as, Ip € SO(3),

ceR® st.ay=poag +C.
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Proof. Uniqueness: After rotation and translation, one can assume «;(0) = a2(0),
t1(0) = t2(0), n1(0) = n2(0), b1(0) = b2(0). By the uniqueness of ODE, ¢,(s) = ta(s),
Vs e I. Hence a; = as.

Existence: Solve the Frenet formula 8.1 with any initial (¢(0),n(0),b(0)). We
get a local solution #(s), n(s),b(s) : I' — R?® with maximal domain. Want to show
I' = I. Just need to show [t(s)|, [n(s)|, |b(s)| are bounded when s € K < [ in a
compact set K.

ThenJA e Ry s.t. |[K(s)|,|7(s)| < A, Vse K.
%(H(S)I +[n(s)] + [b(s)]) < [t'(s)] + [ (s)| + ['(s)] < 2A([¢(s) + [n(s)] + [b(s)])

= [t(s)| + [n(s)| + [b(s)| < €*** - ([t(0)] + [n(0)] + [b(0)])

So I' = I by continuity.

Let a(s) = /(0) + §, t(s)dz. Then « has the given curvature and torsion. [

8.2 Theory of surfaces in R?

A smooth embedded surface S <> R? is called a regular surface.

We identify S with ¢(s). Then 7,,S < T,R* = R3, Vp e S.
Vp € S, we pick local chart X : V. — U B s o R (u, )T —
(z(u,v),y(u,v), 2(u,v))T, called a local parametrization of S.
0 ox 0y 0z p
Xy =Xul=—) = (==, =—,=—) .
“ (8u) (é’u u 6u)
¢
v’ “ov’ v’ dv
The standard restrction on R? restricts to a Riemann matrix on S ie. Vp €

X, = X,

S, we have a symmetric, positive definite bilinear form (—,—), : 7,5 ® T,S —

R, <W1,w2>p = (w1, Wa)ps-

(—, —) is determined by the quadratic form I, : 7,,S — R, 7 — || called the
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1st fundamental form

Example 8.3. S = graph(f) = {(u,v, f(u,v))}. Then

1 0
Xu = 0 s Xv = 1
of of
ou ov
So L,(aX, +bX,) = a® + b* + (aﬁ - ba—ff
ou ov

Recall that the induced volume form on R? is dVol = 4/det(g)dudv = | X, x
X,|dudo.

8.3 Gauss map

From now on, assume S is oriented, pick oriented local parametrization X.
Then Vp € S, IN(p) € R® s.t. |[N(p)| = 1, N(p) L T,,S, (X., X, N(p)) oriented
basis of R®. N(p) is called the normal vector of S at p. Gauss mapis N : S —
S%p— N(p).

Take the differential at p, AN, = N, : T,5 — Tn(,)S* = N(p)* = T,S.

Proposition 8.4. dN,, : T,,S — T,S is symmetric or equivalently self-adjoint. i.e.
<de(w1),w2>p = <(,LJ1, de(WQ)>p, VWQ € TpS

Proof. Take local parametrization X : V — S < R3, (u,v) — p. By linearity, it

suffices to check w; = X, and wy, = X,,.

(N(u,v),X,) = 0= <%_]Z,Xw> + (N(u,v), Xuw) = 0. So (dN,(X,), X,) =
- <N(u7 U),Xw> = <Xu7 de(Xu)> u
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Remark 8.5. Here we actually obtain
- <Nva Xu> = <N7 Xu,v>
Similarly, one can prove
- <Nua Xv> = <N7 Xv,u>
- <Nu7 Xu> = <N7 Xu,u>
- <Nv7 Xv> = <N7 Xv,v>

Define the quadratic form II,, : 7,5 — R, w — — (dN,(w),w). The induced

form is called the 2nd fundamental form

Definition 8.6. Givenp € S,acurve o : I — S < R? 0 — p. Let n, be the normal
vector of a at p. Let 6 be the angle between n, and N(p). K is the curvature of o
atp. K, := K - cosf is called the normal curvature. Then if o is parametrized by

arc length, K,, = (N(p),a(s)). Since (N (a(s)),d'(s)) = 0=

(dN,(a/(0)), &' (0))+(N(a(0)),a"(0)) = 0 = Ky = = (dN,(a/(0)), &/ (0)) = 1I(/(0))

Theorem 8.7 (Meusnier). All curves in S through p € S, with same tangent vector
v e 1,5 at p, |[v| = 1, have the same normal curvature K, = 1L,(v). In particular,
L, = Span (N,,v), a, = L n'S. Then for o, K,, = £ K at p = 11,(v).

So we call 11,(v) the normal curvature of S in the direction of v € T},S.

Definition 8.8. dNV,, has eigenvector e, e; and

de<€1) = —k:lel, de(eg) = —]{7262

Then k1, k» is called the principal curvature of S at p, ey, e; is called the principal
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directions of S at p.

Definition 8.9. If &, k, is the principal curvatures of S at p, N, is the Gauss map,
then the Gaussian curvature is X = detdN, = kjk,. The average curvature

1 1
H = —§trde = 5(]61 + kg)

Example 8.10. For a cylinder {(z,y, 2)|2* + y* = 1}, N(p) = (—z,—y,0), dN, =
(—2'(p), =y (p),0). So k1 = 0,k = 1, K = 0.

1

Example 8.11. S = {2z = ¢> — 2%} < R?% dN =
P { 4 J Vau? + 402 + 1

(2u, —2v,1). Then
ky = 2,1{?2 = —2,K =—4<0.

Definition 8.12. For p € S in a surface,
Call it elliptic if det dV,, > 0.
Call it hyperbolic if det dNV,, < 0.
Call it parabolic if det dV, = 0 but dV,, # 0, or call it planar if dN, = 0.

The 1st fundamental form I, = Edu? 4+ 2Fdudv + Gdv? where

E=(Xy, Xu), F'= (X, Xo), G = (Xy, X) (8.1)

However, [1(¢/) = edu? + 2 fdudv + gdv? where

e=(N,Xuu), f=(N,Xus), 9= (N, Xp0) (8.2)
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Since {X,, X,,, N} is an orthogonormal basis in R?, (N, N) = 1=2(N,,N) =0
0
if we take —. Then
ou
Ny = anXy + anX,

N, = a12X,, + axX,

11 a2 u
Then for dN(a/) = AN(X, - v/ + X, - V) = : . Therefore, dN =
Q21 A22 v’
a11 A12 Now
Q21 A22

[ = (N, Xup) == (No, Xu) = — (012X + 022Xy, Xy) = —a12E — apnF
Similarly, one can prove
f==(Ny,Xy) = —apkl — anF

e = — <Nu,Xu> = —CL11E — CL21F

g=—- <Nu,Xv> = —a12F" — anG

e f a;p Q12 FEF F
[ g as axp) \F G
=
ai; Q12 1 e f G -F
S TEG-P ®3)
a1 A2 f g/ \-F FE
ie.
_[F-eG  gF-[G
W= o 0127 oy
EG - F EG - F (8.4)

el — fFE fE —gFE
21 = —— A2 =~
2T EBEG-F2 P EG - F?
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1 eG—2fF +gE

eg — f?
So K = detdN, = £, H = —trdN, = o

- EG - F?
Example 8.13. For torus 77 = S! x S?,
X(u,v) = ((a+ rcosu)cosv, (a+ rcosu)sinv, rsinu).
Then we can calculate £, F, G, N by calculating X,,, X,,. And we obtain f,g,e

in a similar way. The result

K- eg— 2 cos u
~ EG—F?  r(a+rcosv)

Then
( T 3
K=0 u=—or—
U 2or2
3
1K <0 §>u>g
\K > (0 otherwise

So the torus is elliptic in the outer half and is hyperbolic in the inner half.

Theorem 8.14 (Gauss Theorem EGREGIUM). K is the invariant of S, only depending

on E, F,G. Equivalently, Gauss curvature is invariant under local isometry.

Proof. For {X,, X,, N} an orthogonormal basis of R?, let
Xow =11 Xy + T3 X, + LiN

Xpw =[5 Xy + T2, X, + LyN
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Xy = 155X, + 15, X, + LN

where I'}; is called Cristopher symbol, I, = I'};,i = 1,2
Ny = anXy + a12X,

N, = a12X,, + anX,

Then take the inner product of X, , with N, X,,, X, separately

e = (Xyu, N) =Ly

1 1 0
EEu - 5 ' % <XU’X“> - <XU,quU> = F%,IE + F%2F
1
Fu = §E“ = (Xuu, Xy) =T}, F + I'hG
p
L1 =€
1 .
So we have < ]_—‘hE_F]_—‘%lF:éEu Le.
1 9 1 1
Fh E F K,
= 2 (8.5)
F%l F G Fu - %Ev

So any Ffj can be represented by E, F, G.
Now since (X, 4)v = (Xy0)u-
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0

%Xu,u = ((Fil)vXu + F%lXuv) + ((F%)va + F%lX’uv) + ((e1)uN + eNv)

= (Fil)vXu + F%l((F%Q)Xu + P%ZXU + fN) (8 6)
+ (071 Xy + T (D Xy + 15X, + gN)

+ (%UN + 6(&12Xu + CLQQXU>

Similarly, one can calculate that

0

%Xu,v = (F%Q)UXU + Fi2(rilXu + F%le + eN)

+(T%).X, +T%,(IL X, +T2,X, + fN) (8.7)

+ fulN + flan X, + an Xy)

The coefficients of X, is
L30T + (TF)e + D3TS5, + eagy = TolTy + (DFy)y + TlTy + fas

where

FF —egE) — (feF — f2E)  (f2 — eg)E
86L22—fa21:(6 egEC)J*(Fs >:(EG€iZ? =-KE

So we obtain

(T35, + (T3 + 151135,) — (TIE, + (Ty)u + THIT)
E

K (8.8)

Here we have proved that K can be represented by E, F', G. O
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This is the Gauss formula we obtain

(F%2)u - (F%I)v + Fbri + 1?21?2 - Firgz - Fhf% = —FK (8-9)

Similarly, one can prove for the coefficients of X,

(Fb)u - (Fh)v + F%2F%2 - F%IF%2 = FK (8-10)

It is (when F' # 0) merely another form of the Gauss formula.

And the coefficients of N

ey — fu= eF%z - f(r% - F%l) - gr%l (8.11)

By applying the same process to (z,)y = (Zu.)», We obtain the equation giv-

ing again the Gauss formula (8.9). Furthermore, we can obtain another equation

fo—gu=elgy + f(rgz —I'jy) — grfz (8.12)

(8.11) and (8.12) are called Maindardi-Codazzi equations
The Gauss formula and the Mainardi-Codazzi equations are known under the

name of compatibility equations of the theory of surfaces.

Theorem 8.15. If E, F', G, e, f, g satisfies (8.9) ~ (8.12), then it uniquely determines a

surface.

8.3.1 Covariant derivative

For S — R® regular surface, pe S, X e I'(T'S) = C*(S,R%), X : g S > X, €
7,5 < T,R? = R?.

y € T,S define covariant derivative of X in the direction of y s.t. V, X =
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Pjr,s(y(X)) where Pjy is the orthogonal projection to V. So we define a map
X e(TX) > V,X €T,S.
Given vector fields X,Y € I'(T'S), define Vy X € I'(T'S) by

(VyX), = Vy, X €T,5, Vpe S (8.13)

Then V : I'(T'S) x I(T'S) - I'(T'S), (X,Y) — Vy X.
Lemma 8.16.
@ V is bilinear.
® VX =f VyX
® (Leibniz rule) Vy (fX) = fVy X +Y(f) - X.
@ (compatibility with metric) Y ((X1, Xs)) = (VrX1, Xo) + (X1, Vy Xo)
® (torsion free) VxY — VxY = [X,Y].

Proof. @ is straight forward.
@

(VivX)p = Vipy, X
= pf(f(p)Y,(X))
= f(p) - Pj(Yp(X))

= (f ’ VYX)p

(Vy[X), = Pj(Yp(fX))
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= Pj(f(p)Y,(X) + Yo X,)
= [(p)Pj(Yp(X)) + Yo ()X,

=(f-Vy X +Y(f)X),

(Y (X1, Xa)), = (Yp(X1), Xop) + (X1, Yp(X2))
= <VY,,X17X2,p> + <X17p, VYPX2>

= ((Vy X1, Xo) + (X1, Vy X2)),
® Define tor(X,Y) := VxY — Vy X — [X,Y] Then

tor(fX,Y) = VxV — Vy fX — [fX,Y]
= fVxY — fVyX =Y (f)- X - fIX,Y] +Y ()X

= ftor(X,Y)

Take local chart (U, 2!, 2?) of S. Suffices to check tor(X,Y) = 0, VX,Y € ['(TU).
For X, = 0z%, Xy = 02%, if we denote X = f1 X + X5, Y = 1 X + 92 X5, then

it suffices to check tor(X, X»).

A

oL oL

For the inclusion map S <> R?. X; = 5 € C*(S,R%), Xy = —5 € C*(S,R?).
Then
Vi, Xs = Pj( il )WV, X
X1 2 — j axlax2 X2 1
So tOI'(Xl,Xg) = 0. O

Definition 8.17. A bilinear map V : I'(T'S) xI'(T'S) — I'(T'S) that satisfies ® ~ ® is
called a connection on 7'S. A connection allows us to take covariant derivative of

vector fields. A connection that satisfies ®,® is called a Levi-Civata connection,
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denoted as V¢

Theorem 8.18. V€ is uniquely determined by the first fundamental form. ie. VI©

is an intrinsic quantity. Equivalently, it is invariant under isometry.

Proof. Take (U, z',z?), set X; = 6’i e T(TU).

Christoffel symbol Vx, X, = Z F”C Xk, F’“ € C*(U,R). Then torsion free is

k=1,2
equivalent to I'y; = I} ..

Let g; = = (X;, X;) € C*(U,R) be the first fundamental form.

Then — g @ = 2(VX1X1,X1>
ox!
1 0dg
Thon + g = B axll (8.14)
We 0 g XX b XLV Xe) = (VX Xa) b (X, VX)) =
aXl_<X1172>+<1,X12>—<X1172>+<1,X21>—
1 a911
(Vx, X1, X2) + 3 22 So
0 1 0
(Vx, X1, Xo) = 8!;112 — 3" 65221 (8.15)
Le.
dg 1 0dg
Phg + Thom = 55 =5 =5 (8.16)
So combined with (8.14) and (8.16)
1 dgu
F%l . 2 ozt
= (97) - (8.17)
T 0912 1 911
orlt 2 Ox?
where (¢) = (gi;) ™"
SoI'};, I'}, is uniquely determined by g;;. Similar for other I'};. O
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A natural question is to compute Vx, Vx,—Vx,Vx,,0r VxVy—VyVx —Vix,y]
more generally.

Define R(X,Y, Z)e I'(T'S) by VxVyZ — VyVxZ — Vixy1Z.
Proposition 8.19. V£, h, p e C*(S,R), R(fX,hZ,pZ) = fhpR(X,Y, Z).
Corollary 8.20. R(X,Y, Z), only depends on X,,,Y,, Z, ie. Re '(Hom(T'S®TS®
TS, TS))=T(T*SRT*S®T*SQTS) is a tensor field.

Proof of corollary. Left as exercise. O

Proof of Proposition. Consider the case f = h = 1.

R(X,Y,pZ) = VxVypZ —NyNVxpZ —VixypZ
=Vx(pVyZ +Y(p)Z) = Vy(pVxZ + X(p)Z) — pVixy1Z — [X,Y](p)Z
=pVxVyZ + X(p)VyZ +Y(p)VxZ + XY (p)Z
— pVyVxZ =Y (p)VxZ — X (p)VyZ - YX(p)Z
—VixyZ = [X,Y](p)(2)

= pR(X,Y, Z)

O
R(X,Y, Z) is an intrinsic quantity. There is a relation with Gauss curvature K.
Theorem 8.21. For any orthogonormal basis Vi, Vs of T,,S, R(Vi, V2, Vi) = —K(p)Va.
Corollary 8.22 (Gauss Theorem EGREGIUM). K is an intrinsic quantity.
Proof. Take local chart (U,x',2%) st Vi = X1, Vo = Xp,. S <% R3. Then

X, = op e C*(S,R%). For any i, j, define X = Gl
T O ) : Y7, gk — ﬁxfaxk

Vpe U, (Xi,, Xap, N,) is a basis for T,R3, where N : S — 5? < R3 is the Gauss

map. Then
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X = Xi(X,) = Vx, Xy + LN
X12 = X2<X1) = VXQXl + LQN
X21 == leXZ + LQN

Xoo = Vx,Xo + LsN

where Ly, Ly, Ly € C*(U,R). The second fundamental form is given by matrix
Ly Lo
Ly Ls

R(X1,X2,X1) =V, Vx, X1 —Vx,Vx, X
= Vx, (X2 — LoN) = Vx, (X131 — L1N)
= Pj(X112 — X1(LaN) — X011 + Xo(L1N))
= Pj(L1X2(N) — Ly X1 (N))

= Pj(L1Ny — LoNy)

As we proved before, (see Remark 8.5)

-

(X1, Nq) = =Ly
(X1, Ng) = —Ly

) (8.18)
(X9, Ny) = =Ly

\(XQ,N2> = —Ls
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and (N, N;) = 0 since (N, N) = 1. X;, X5, N orthogonormal =
Ny = L1 Xy — Ly Xy, No = =Ly Xy — L3 X5

Then R(Xl,XQ,Xl) = P](LlNQ — LQNl) = PJ(L%XQ — L1L3X2) = —P]<KXQ) =
K. [

8.4 Parallel transport
For v : I — S curve on S, a vector field W along v is an assignment t € [ ~»
Wi € Ty»)S < R3. We can view W as W € C*(I,R?). ie.

{vector fields over v} = {W : [ — R*|W(t) € T,;)S,Vt € I} = D'(v*T'S)

where v*T'S is the pullback of T'S.

Define covariant derivative (along )

dw

Vayw(W) = Pjr, s (E) e L(y*T'9)

which is another vector field over .
Example 8.23.

(1) ~'(t) e D(v*(T5)).

(2) v parametrized by arc length, V¢, 3 unique N7, € TS s.t. (v'(t), V) is
an oriented orthogonormal basis for T’,;)S. So we can define the normal ve

tor field of yas N7 : t — Nj(t).
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(3) Given X € I'(T'S), X|, e '(v*T'S),t — X,(1), then we have
V(X)) = VynX

So the notation is compatible.

Given W e I'(v*(T'S)), say W is parallel if V.,,yW =0, Vt € I.

We say v is a geodesic if 7/(t) is parallel, ie. V. 7' (t) = 0, which generalizes
the straight line in R*.

For v : I — S — R? parametrized by arc length. Then |y (¢)] = 1 = 7"(t) L
V() =9"(t) = Ky N)y + Kn + N f(t) where K| is called the geodesic curvature
and K, is the normal curvature.

K(v)? = K] + K7, is called the curvature of vy as curve in R®,

VowY(t) = K gN;Y( 1) 80 7 is geodesic if and only if K, = 0.

Example 8.24. S = S? = {2 +¢y* + 22 = 1}, 7 : R — S, y(t) = (cost,sint,0).

Then +/(t) = (—sint, cost,0), NJ, = (0,0,1), N:f(t) = (cost,sint,0). ~"(t) =

(—cost,—sint,0) = =N3,) = K, =0, K,, = —1 = 7 is a geodesic.

Indeed, there is a fact about geodesic in S?

Fact 8.25. v : I — 52 is a geodesic if and only if - moves along a big circle in a constant

speed.

Fact8.26. v : I — Sisa geodesic ifand only if Vi, € I,3e > 0 s.t. Vt; € I, [t1 —to| <e¢,

we have 1(7Y|[t,1,1) = d(v(to),v(t1)), where
l(n) = Ln’(t)dt, d(p, q) = min{i(n)[n : [0,1] = S7(0) = p,n(1) = ¢}

i.e. Geodesic is the shortest path between two points locally.
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8.5 Gauss-Bonnet Theorem

Theorem 8.27 (Gauss-Bonnet Theorem). S closed and oriented surface. Then
J KdVol = 27x(S) (8.19)
S

There is a generalization for a famous result: The sum of the outer angles of
the polygon is 27.

Fory:I=[0,T] - S.

Say + is simple if v(t1) # (t2) for t; # t5 (except t10,ty = T')

Say v is closed if v(0) = (7).

Say vispiece Ctif 30 =ty <t1 < - <t, =T st v =7, C.

For each i, we have

() —(t) () — ()
' (t,) = lim L\ ) = lim 2
V(%) Jm = s (t2) P —

They are both in 7',y S. 0; is defined as the angle from +'_(t;) to ¥/, (¢;), 6; € [—m, 7].

231 3}'2 .
y:I -8R, yI) cU=>~R%,U % R? oriented local chart. X; =
0 0
T 02 ©

Assume ~ parametrized by arc length t, ie. +/(t) = 1=3p: 1 - R st

F(TU) ’Q/S% €1,€2 € F(TU) such that <€i, €j> = 51]

V(1) = cosp(t) - e15@) + sinp(t)ea -
Define the rotation number of 7, rot(y) = ¢(t1) — p(to) for I = [to, t1].

Theorem 8.28. Let v = 1 U Yo U -+ - U 7, be a piecewise C* simple closed curve whose
image is containedinU < S,v: [ - U c S — R3. Then

Z I‘Ot(’}/i) + 291 =27

i=1 i=1

Proof. When S = R?* — R? is the standard embedding, see Do Garmo. Here is a
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simplified proof

For A ={(z,y) eR*0<z<y<l1},f:A—>S!

-

Mol v Ay (wy) # (0,1)

flz,y) =4 L&) T =y (8.20)

1 (z)”

=) (z,9) =(0,1)

\

Then f|c, f|aup are loops in S*, where C is the hypotenuse and A, B are the legs
of this triangle.

Observe that 27 - deg(f|c) = rot(y) = 2rdeg(f|aun), f(0,y) = 1(y) =(0) _

() = ~(0)]
_f(87 1)
Since 3L < R?, L tangent to v at 7(0), 7 fall on one side of L = f|4 is not
surjective. By considering fundamental group, we can prove deg(f|aup) = 1.

Thus, deg(f|c) = 1, which is what we need. O

Here are some notations we use below: (U, 2!, 2?) chart of S, X1, Xy, ey, e, de-

fined above.

Proposition 8.29. Ja € QY (U) s.t. Vye; = a(V)ez, Vyes = —a(V)ey, YV € T(TU).
Furthermore, KdVol = —da.

Proof.
<€2,62> =1 <Vve1,€1> =0
VV€1 = T(V)€2
A <€1,€1> =1 = 9 <V\/€2,€2> =0 g
VV€2 = —T(V)el
L <€1, €2> =0 L <Vve17 62) = — <€1, VV€2>

for some 7 : I'(TU) — C*(U).
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Viver = fVyer = 7(fV) = fr(V). So 7 is a (0,1)-tensor, i.e. T €
['(Hom(TU,R)). =3 a e QYU) st. 7(V)=«a(V).

Still need to prove (Kda), = (—da),. Vp € U. We may assume X; , = e;, and
Xop = €2, that are orthogonormal.

By theorem 8.21, R(X; ,, Xo,,€1,) = —K(p)ea,. ie.

—K(p)eap = R(X1p, Xop, €1,)
= (Vx,Vx,e1 — Vx,Vx,e1),
= (Vx,a(Xs)es — Vx,a(X1)ea),
= (X1a(X3) — Xoa(X1)), - €25

= dOé(Xl, Xg)pezp

So (da), = —K(p)et A e = —K (p)(dVol), =

Theorem 8.30 (Local Gauss-Bonnet Theorem). v : I — U c S — R3, v = 3 U
-+ U v, simple closed and piecewise C* curve. ~ bounds a region R < U, oriented  as

OR. Then
ZJ Kgd5+20i+f KdVol = 27
i=1Y7 i=1 R

Proof. For «y parametrized by arc length, let

V() = cospi(t)er + singpi(t)es, N7y = —sinpi(t)er + cos pi(t)es

Then

_ / Y / y
= a(AO)NT + A1) - Ny

= (a(}(6)) + FOINT,
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K, = a((t)) + #i(t) = f K,dS = f a + rot(y;) =

Vi

ZJKdSW—Z@—ZJOH—Zrot% Zn:@-
i=1v7 i=1 i=1 i i=1 i=1

=Ja+27r
-

:J da + 27
R

—J KdVol + 27
R

O

To prove the general Gauss-Bonnet theorem, only need to use triangulation of
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