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2 Complex Functions

2.1 Analytic functions and rational functions

2.1.1 Harmonic function

Definition 2.1 (Cauchy-Riemann equation).

Bu

Bx
“

Bv

By
,

Bu

By
“ ´

Bv

Bx

Definition 2.2 (Harmonic function). A function u is harmonic if it satisfied

Laplace equation △u “ 0.

If two harmonic function u and v satisfies Cauchy-Riemann equations, then

we say that v is conjugate harmonic function of u ñ u is conjugate harmonic of

´v.

2.1.2 Polynomials and rational function

The polynomial P pzq “
n
ř

j“0

ajz
j is analytic in C.

We will prove the fundamental theorem of algebra

Theorem 2.3 (Fundamental Theorem of Algebra). Every polynomial with degree n ą

0 has at least one point.

Theorem 2.4 (Gauss-Lucus theorem). The smallest convex polygon that contain the

zeros of P also contains the zeros of P 1.

Proof. Only need to check.

We can get this equation.

P 1pαq

P pαq
“

n
ÿ

j“1

1

α ´ αj
“ 0 ñ

n
ÿ

j“1

α ´ αj
|α ´ αj|2
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Hence α is linearly represented by αj .

Proposition 2.5. Let P and Q be two polynomial with no common zeros. Then the

rational function Rpzq “
P pzq

Qpzq
is analytic away from the zeros of Q.

The zeros of Q are called poles of R, and the order of a pole is equal to the order of the

corresponding zero of Q.

We often view R as a function from Ĉ to Ĉ. R1pzq :“ Rp1
z
q.

If R1p0q “ 0, the order of the zero at 8 (of R) is the order of the zero of R1pzq

at z “ 0.

If R1p0q “ 8, the order of the pole at 8 (of R) is the order of the pole of R1pzq

at z “ 0.

Suppose

Rpzq “
anz

n ` ¨ ¨ ¨ ` a1z ` a0
bmzm ` ¨ ¨ ¨ ` b1z ` b0

, an ‰ 0, bm ‰ 0

Then

R1pzq “ zm´n a0z
n ` ¨ ¨ ¨ ` an

b0zm ` ¨ ¨ ¨ ` bm

By discussing m and n, we can infer the situation of Rpzq at 8.

By adding the order of poles and zeros at 8, we can get the following theorem.

Theorem 2.6. The total number of zeros and poles of a rational function are the same.

Remark 2.7. This common number is called the order of the rational function.

Corollary 2.8. Suppose a rational functionR has order p. Then every equationRpzq “ a

has exactly p roots.

Proof. R̂pzq “ Rpzq ´ a has the same poles as R.

A rational function of order 1 is a linear fraction Rpzq “ az`b
cz`d

, ad ´ bc ‰ 0

Such fraction is often called Möbius transformation

Every rational function has a representation by partial fractions.
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• If R has a pole at 8. Then we can write

Rpzq “ Gpzq ` Hpzq (˚)

where G is a polynomial without constant term, and H is finite at 8.

The degree of G is the order of the pole of R at 8. G is called the singular

part of R at 8.

• Let the distinct finite poles of R be β1, ¨ ¨ ¨ , βk. Let Rjpψq “ Rpβj ` 1
ψ

q. Then

Rj is a rational function with a pole at 8. As in p˚q, we can write

Rj “ Gj ` Hj

with Hj finite at 8. Then

Rpzq “ Gjp
1

z ´ βj
q ` Hp

1

z ´ βj
q

with Gj is a polynomial in 1
z´βj

without constant term called the singular

point of R at βj .

• Let F pzq “ Rpzq ´ Gpzq ´
k
ř

j“1

Gjp
1

z´βj
q.

Then F is a rational function which can only have poles among βj,8

Since by our construction, F is finite at every βj, 1 ď j ď k and 8.

So F is a constant.

In particular, Rpzq “ Gpzq `
k
ř

j“1

Gjp
1

z´βj
q ` c.

7



2.2 Power Series

2.2.1 Power series

Theorem 2.9 (Abel’s theorem). If
ř

an converges, then fpzq “
ř

anz
n Ñ fp1q as

z Ñ 1 in such a way that
|1 ´ z|

1 ´ |z|
remains bounded.

2.3 Exponential, Trigonometric and Logorithmic Functions

2.3.1 Exponential and Trigonometric function

The exponential function is defined as the solution if the differential equation

$

’

&

’

%

f 1pzq “ fpzq

fp0q “ 1

We denote ez “ exp z “
8
ř

n“0

zn

n!
.

The trigonometric function are defined by

cos z “
eiz ` e´iz

2
sin z “

eiz ´ e´iz

2i

2.3.2 Logorithmic Functions

The logorithmic function ln is defined by z “ lnw is a root of the equation

ez “ w.

For w ‰ 0, we write z “ x ` iy, then

ex`iy “ w ô

$

’

&

’

%

ex “ |w|

eiy “
w

|w|
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The first equation has a unique solution x “ ln |w|.

The second equation eiy “
w

|w|
has a unique solution y0 P r0, 2πq.

If we write w “ reiθ, then x “ lnw, y “ θ “ argw.

Thus, for w ‰ 0, we have

lnw “ ln |w| ` i argw

The function ln is actually not single-valued. But we can define a single-valued

function Ln

We define

ab “ exppb ln aq

We will prove Ln is analytic in C ´ p´8, 0s but not continuous in p´8, 0s.

Ln is the principal branch of the logithm.

3 Conformal Mappings

3.1 Basic topology

3.1.1 Connectedness

Theorem 3.1. A nonempty open set in C is connected iff any two of its points can be

joined by a polygon which lies in the set, i.e. Connectedness is equivalent to Path Con-

nectedness

An nonempty connected subset is called a region
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3.1.2 Compactness

Definition 3.2. A set X is totally bounded if @ε ą 0, X can be covered by finitely

many balls of radius ε

Theorem 3.3. A set is compact iff it is complete and totally bounded.

Theorem 3.4. A subset X Ă is compact iff every infinite sequence of X has a limit point

in X .

3.1.3 Continuous Functions

Theorem 3.5. Continous function maps connected space to connected space.

Theorem 3.6. Continous function maps compact space to compact space.

3.2 Conformality, geometric consequences of the existence of a

derivative

3.2.1 Arcs and closed curves

The equation of an arc r in C can be represented by one of the terms

• x “ xptq, y “ yptq, α ď t ď β, x, y are continuous at t

• zptq “ xptq ` iyptq, α ď t ď β.

• The continuous mapping γ : rα, βs Ñ C.

For a non-decreasing function φ : rα, βs Ñ rα, βs, z “ zpφptqq, α1 ď τ ď β1 is

change of parameter of zptq.

The change is reversible iff φ is strictly increasing.

If γ is differentiable, then call γ a curve.

γ is simple , or a Jordan curve, if γ is injective.

γ is closed curve if γp0q “ γp1q.

10



3.2.2 Analytic Functions in Regions

A function f is analytic on an arbitrary set A if it is the restriction to A of a

function which is analytic in some open set containing A.

Theorem 3.7. An analytic function in a region(i.e. open and connected) Ω whose deriva-

tive is 0 must reduce to a constant. The same hold if the real part, the imaginary part, the

modulus, or the argument is constant.

3.2.3 Conformal Mappings

Suppose f : Ω Ñ C is analytic in Ω. r1 “ z1ptq, r2 “ z2ptq, α ď t ď β.

z0 “ z1pt0q “ z2pt10q, z
1
1pt0q ‰ 0, z1

2pt̂0q ‰ 0, α ă t0, t̂0 ă β.

f 1pz0q ‰ 0, w1ptq “ fpz1pt0qq, w2 “ fpz2pp̂t0qqq

Γ1 “ tw1ptq|α ď t ď βu, Γ2 “ tw2ptq|α ď t ď βu

Then

w1
1ptq “ f 1pz1ptqqz1

1ptq

w1
2ptq “ f 1pz2pt̂qqz1

2pt̂q

ñ

w1
1pt0q ‰ 0, w1

2pt0q ‰ 0

argw1
1pt0q “ arg f 1pz1pt0qqz1

1pt0q

argw1
2pt0q “ arg f 1pz2pt̂0qqz1

2pt̂0q

So the "angle" argw1
1pt0q ´ argw1

2pt̂0 “ arg z1pt0q ´ arg z2pt̂0q remains the same.

Now we give the definition.
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Definition 3.8. w “ fpzq is said to be conformal in Ω if f is analytic in Ω and

f 1pzq ‰ 0 for @z P Ω.

Easy to prove that linear change of scale at z0 is independent of the direction.

i.e. |f 1pz0q| “ lim
zÑz0

δσ
δs

3.2.4 Length and Area

The length of a differentiable arc γ with the equation zptq “ xptq ` iyptq, a ď

t ď b

Lpγq “

ż b

a

a

px1ptqq2 ` py1ptqq2dt “

ż b

a

|z1ptq|dt

For Γ “ fpγq where f conformal mapping.

Then

LpΓq “

ż b

a

|f 1pzptqq| ¨ |z1ptq|dt

The area of E Ă R is ApEq “
ş ş

E
dxdy

Then by the differentiable functional transformation, the area Ê “ fpEq is

ApÊq “

ż ż

E

|uxvy ´ uyvx|dxdy

If f is the conformal mapping of an open set containing E, then by Caucht-

Riemann equation

ApÊq “

ż ż

E

|f 1pzq|2dxdy

3.3 Möbius Transformation

Recall that a Möbius transformation is a function of the form

w “ spzq “
az ` b

cz ` d
, ad ´ bc ‰ 0

12



Then it has an inverse z “ S´1pwq “
dw ´ b

´cw ` a
.

We may define Sp8q “ lim
zÑ8

Spzq “ a
c
, Sp´d

c
q “ 8

With these definition, S : Ĉ Ñ Ĉ is a topological mapping. Here one may use the

chordal metric to define the topology.

S 1pzq “
ad ´ bc

pcz ` dq2

Then S is conformal in Ĉ ´ t´d
c
,8u.

w “ z ` α is called a parallel translation.

w “ kz with |k| “ 1 is a rotation.

w “ kz with k ą 0 is a homothetic transformation.

x “ 1
z

is called an inversion.

Proposition 3.9. Every Möbius transformation is a composition of the above four opera-

tions.

3.3.1 Cross ratio

For three distinct points z2, z3, z4 P Ĉ,we can find a Möbius transformation S

such that Spz2q “ 0, Spz3q “ 1, Spz4q “ 8.

Lemma 3.10. The Möbius transformation satisfying the above conditions is unique.

The cross ratio pz1, z2, z3, z4q is the image z1 under the Möbius transformation

which maps z2 to 1, z3 to 0 and z4 to 8.

pz1, z2; z3, z4q “
z1 ´ z3
z1 ´ z4

¨
z2 ´ z4
z2 ´ z3

(3.1)

Theorem 3.11. If z1, z2, z3, z4 P Ĉ are distinct, and T is any Möbius transformation,

then pTz1, T z2, T z3, T z4q “ pz1, z2, z3, z4q.

13



Lemma 3.12. Let T be a Möbius transformation, T pRq is either a circle or a straight line.

Theorem 3.13. The cross ratio pz1, z2, z3, z4q is real iff the four points lie on a circle or a

straight line.

Remark 3.14. One may prove the theorem by elementary geometry

Theorem 3.15. A Möbius transformation maps circles into circles.

3.3.2 Symmetry

Suppose T is a Möbius transformation which maps R̂ onto a circle C.

We say that w “ Tz and w˚ “ T z̄ are symmetric w.r.t. C.

Remark 3.16. This definition is independent of T . Suppose S is another Möbius

transformation which maps R̂ onto C, then S´1T maps R̂ to R̂, and this S´1w “

S´1Tz and S´1w˚ “ S´1T z̄ are conjugate.

The points z and z˚ are symmetric w.r.t C through z1, z2, z3 iff pz˚, z1, z2, z3q “

pz, z1, z2, z3q.

This can be another definition.

Note that only the points on C are symmetric to themselves.

The mapping z ÞÑ z˚ is 1-1 and is called reflection w.r.t. C.

Geometric Meaning of Symmetry

Case1: C is a straight line. We may assume z3 “ 8.

z, z˚ are symmetric w.r.t. C if and only if

z˚ ´ z2
z1 ´ z2

“
z̄ ´ z̄2
z̄1 ´ z̄2

Then

|z˚ ´ z2| “ |z ´ z2|, @z2 P C and z2 ‰ 8

14



Im
z˚ ´ z2
z1 ´ z2

“ Im
z̄ ´ z̄2
z̄1 ´ z̄2

So C is the bisecting normal of the segment between z and z˚.

Case2: C is the circle |z ´ a| “ R.

Then for @ distinct z1, z2, z3 P C, pz, z1, z2, z3q “ pz ´ a, z1 ´ a, z2 ´ a, z3 ´ aq

“ pz̄´ ā, z̄1 ´ ā, z̄2 ´ ā, z̄3 ´ āq “ pz̄´ ā,
R2

z1 ´ a
,
R2

z2 ´ a
,
R2

z3 ´ a
q “ p

R2

z̄ ´ ā
, z1 ´ a, z2 ´

a, z3 ´ aq

“ p
R2

z̄ ´ ā
, z1, z2, z3q.

Then the symmetric point of z w.r.t. C is

z˚ “
R2

z̄ ´ ā
` a

or

pz˚ ´ aqpz̄ ´ āq “ R2

ñ
$

’

’

&

’

’

%

|z˚ ´ a| ¨ |z ´ a| “ R2

z˚ ´ a

z ´ a
“

pz˚ ´ aqpz̄ ´ āq

|z ´ a|2
ą 0

Theorem 3.17 (The Symmetric principle). If a Möbius transformation maps a circle

C1 onto a circle C2, then it transforms any pair of symmetric points w.r.t. C1 into a pair

of symmetric points w.r.t. C2.

Proof. Case1: C1 “ R̂. Let T be the Möbius transformation which maps R̂ onto C2.

@z P C, by definition, w “ Tz and w˚ “ T z̄ are symmetric w.r.t. C2.

Case2: C1 is a general circle. Let T : C1 Ñ C2 and S : R Ñ C2 be Möbius

transformation.

Suppose w,w˚ are symmetric w.r.t. C1. Then there exists z s.t. w “ Sz, w˚ “

15



Sz̄.

Then we can find Tw “ TSz, Tw˚ “ TSz̄ are symmetric w.r.t. C2 since TS : R̂ Ñ

C2

Remark 3.18. (1). The Möbius transformation from C1 to C2 satisfies z1 ÞÑ

w, z2 ÞÑ w2, z3 ÞÑ w3 where z1, z2, z3 P C1, w1, w2, w3 P C2 is given by

pw,w1, w2, w3q “ pz, z1, z2, z3, q

(2). The Möbius transformation from C1 to C2 satisfies z1 ÞÑ w1, z2 ÞÑ w2 where

z1 P C1, z2 R C1, w1 P C2, w2 R C2 is given by

pw,w1, w2, w
˚
2 q “ pz, z1, z2, z

˚
2 q

3.3.3 Steiner Circles, circular net

For Spzq “
az ` b

cz ` d
, S 1pzq “

ad ´ bc

pcz ` dq2
.

A point z R a circle C is said to on the right(left, resp.) of C if Impz, z1, z2, z3q ą

0(Impz, z1, z2, z3q ă 0)

Remark 3.19.

(1). This agrees with everyday use since pi, 1, 0,8q “ i

(2). This distinct between left and right is the same for all triples, while the

meaning may be reversed.

(If C “ R̂, then pz, z1, z2, z3q “
az ` b

cz ` d
with a, b, c, d P R ñ Impz, z1, z2, z3q “

ad ´ bc

|cz ` d|2
Impzq)

(3). We can define an absolute positive orientation of all finite circles by requir-

ing that 8 should be lie to the right of the oriented circles.
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Consider a Möbius transformation of the form

w “ k ¨
z ´ a

z ´ b

Here, z “ a ÞÑ w “ 0, z “ b ÞÑ w “ 8.

Then circles through a, b maps to straight line through 0,8.

The concentric circle about the origin, |w| “ ρ, correspond to circles with the

equation
ˇ

ˇ

ˇ

ˇ

z ´ a

z ´ b

ˇ

ˇ

ˇ

ˇ

“
ρ

|k|

These are the circles of Apollonius with limit points a and b.

Denote by C1 the circles through a, b and C2 the circles of Apollonius with

these limit points. The configuration formed by all the circles C1 and C2 is called

the Steiner circles(or circular net)

Theorem 3.20.

(a) There is exactly one C1 and one C2 through each point in Ĉzta, bu

(b) Every C1 meets every C2 under right angle.

(c) Reflection in a C1 transforms every C2 into itself and every C1 into another C1.

(d) The limit points a, b are symmetric w.r.t. each C2, but not w.r.t. other circles.

Proof. If the limit points are 0,8, those properties are trivial in the w-plane. The

general case follows since all properties are invariant under Möbius transforma-

tions.

3.4 Elementary Conformal mapping

Example 3.21. w “ zα where α ą 0.
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Let Spu1, u2q with 0 ă φ2 ´ φ1 ď 2π be tz P C : z ‰ 0, φ1 ă argpzq ă φ2u where

argpzq can be chosen as any value of it.

Then Spφ1, φ2q is a region.

In this region, a unique value of w “ zα is defined by argw “ α arg z.

This function is analytic with
dw

dz
“ α

w

z
.

This function is 1 ´ 1 only if αpφ2 ´ φ1q ď 2π.

Example 3.22. w “ ez maps tz P C : ´
π

2
ă Impzq ă

π

2
u onto tw P C : Repwq ą 0u

Example 3.23. w “
z ´ 1

z ` 1
maps tz P C : Repzq ą 0u onto tw P C : |w| ă 1u

Example 3.24.

Czr´1, 1s
z1“ z`1

z´1
ÝÝÝÝÑ Czp´8, 0s

z2“
?
z1

ÝÝÝÝÑ tRepz2q ą 0u
w“

z2´1
z2`1

ÝÝÝÝÝÑ tw P C : |w| ă 1u (3.2)

3.4.1 Elementary Riemann surfaces

Example 3.25. w “ zn, n P Z` and n ą 1.

There is a 1-1 correspondence between each angle
pk ´ 1q2π

n
ă arg z ă

k ¨ 2π

n
, k “ 1, 2, ¨ ¨ ¨ , n and while w-plane except for the positive real axis.

Example 3.26. w “ ez. This function maps each parallel strip pk ´ 1q2π ă Im z ă

k ¨ 2π, k P Z onto a sheet with a cut along the positive axis.
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4 Complex Integration

4.1 Fundamental Theorems

4.1.1 Line integral and rectifiable arcs

Let fptq “ uptq ` ivptq be a complex-valued defined on t P ra, bs Ă R where u, v

are real-valued functions. If f is continuous on ra, bs, we may define the integral

ż b

a

fptqdt :“

ż b

a

uptqdt ` i

ż b

a

vptqdt

Let γ be a piecewise differential arc in C with the equation z “ zptq, a ď t ď b.

If f is continuous on γ, then fpzptqq is continuous on ra, bs, and we define

ż

γ

fpzqdz “

ż b

a

fpzptqqz1ptqdt (4.1)

The integral defined in 4.1 is independent of the parametrization of γ. Suppose

that anther parametrization of γ is γ : pα, βq Ñ C, τ ÞÑ zptpτqq, where t : pα, βq Ñ

pa, bq, τ ÞÑ tpτq is piecewise differentiable. Then we have

ż b

a

fpzptqqz1ptqdt “

ż β

α

fpzptpτqqqz1ptpτqqt1pτqdt “

ż β

α

fpzptpτqqq
dzptpτqq

dτ
dτ (4.2)

For an arc γ with equation z “ zptq, a ď t ď b, we define ´γ by z “ zp´tq,´b ď

t ď a.

Then we have

ż

´γ

fpzqdz “

ż ´a

´b

fpzp´tqq
dzp´tq

dt
dt
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“ ´

ż ´b

´a

fpzp´tqqz1p´tqdt

“ ´

ż b

a

fpzpτqqz1pτqdτ

“ ´

ż

γ

fpzqdz

So we have those properties:

Proposition 4.1.

(a)
ż

´γ

fpzqdz “ ´

ż

γ

dz

(b) Let f and g be two continuous functions on the piecewise differentiable arc γ, then

ż

γ

pλ1f ` λ2gqdz “ λ1

ż

γ

fdz ` λ2

ż

γ

gdz, @λ1, λ2 P C

(c) If γ can be subdivided into two pieces differentiable arcs γ1 and γ2, and f is contin-

uous on γ1 , then
ż

γ

fdz “

ż

γ1

fdz `

ż

γ2

fdz

(d) pcq implies that the integral of a closed curve doesn’t depend on the starting point

on the curve

Example 4.2. Evaluate
ż

γ

1

z ´ a
dz where γ is the circle centered at a P C with

radius R.

Let z “ zptq “ a ` Reit. Then the integral is 2πi

4.1.2 The fundamental theorem of Calculus for integrals in C

The line integral w.r.t. z̄ is defined by

ż

γ

fpzqdz “

ż

γ

fpzqdz
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With this notation, line integrals w.r.t. x “ Repzq and y “ Impzq can be defined by

ż

γ

fpzqdx “
1

2
r

ż

γ

fpzqdz `

ż

γ

fpzqdzs

ż

γ

fpzqdy “
1

2i
r

ż

γ

fpzqdz ´

ż

γ

fpzqdzs

if we write fpzq “ µ ` iν, we have

ż

γ

fpzqdz “

ż

γ

fpzqdx ` i

ż

γ

fpzqdy “

ż

γ

pµdx ´ νdyq ` i

ż

γ

pνdx ` µdyq

Remark 4.3. It is followed by the intuition. We can view the integration as the

multiplication between f and dz.

The integral w.r.t. arc length is defined by

ż

γ

fpzq|dz| “

ż b

a

fpzptqq|z1ptq|dt

This integral is again independent of the parametrization. It is easy to check

ż

´γ

fpzq|dz| “

ż

γ

fpzq|dz|

Now we define length of a curve γ: Lpγq “
ş

γ
|dz|

We have the inequality:

ˇ

ˇ

ˇ

ˇ

ż

γ

fdz

ˇ

ˇ

ˇ

ˇ

ď

ż

γ

|f | ¨ |dz| ď Lpγq ¨ sup
zďγ

|fpzq|

The length of an arc γ (z “ zptq) can also be defined as the least upper bound of
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all sums
n
ÿ

i“1

|zptiq ´ zpti´1q|

where a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b If this least upper bound is finite, we say that the

arc is rectifiable

It is easy to show that piecewise differentiable arcs are rectifiable.

The integral of a continuous function f on a rectifiable arc may be defined as

ż

γ

fpzqdz “ lim
n
ÿ

k“1

fpzpψkqqrzptkq ´ zptk´1qs

Theorem 4.4. Let Ω Ă C be a region, and P,Q two (possibly complex-valued) functions

that are continuous on Ω, γ closed curve. The integral
ş

γ
P px, yqdx`Qpx, yqdy depends

only on the end point of γ iff there exists a function Upx, yq on Ω with
BU

Bx
“ P,

BU

By
“ Q.

Proof. "ð": If such a U exists, then

ż

γ

Pdx ` Qdy “

ż

γ

BU

Bx
dx `

BU

By
dy “

ż

γ

dU

dt
dt “ Upγpbqq ´ Upγpaqq

"ñ": Fix a point px0, y0q P Ω. We define Upx, yq “
ş

γ
Pdx ` Qdy where γ is any

curve between px0, y0q and px, yq. Easy to check that it is true.

Theorem 4.5 (Fundamental theorem of Calculus for integrals on C). Let f be con-

tinuous on a region Ω containing γ.
ş

γ
fdz depends on the endpoints iff f is the derivative

of an analytic function F in Ω.

Remark 4.6. We will prove
ż

γ

fdz “ F pω2q ´F pω1q where γ begins at ω1 and ends

at ω2.

Proof. Transform the line integration into the composition of two real integration.
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Corollary 4.7. If F is analytic on Ω with F 1 “ f , and γ is a closed curve in Ω, then
ş

γ
fdz “ 0. Conversely if f is continuous on Ω and

ş

γ
fdz “ 0 for any closed curve in

Ω, then f is the derivative of an analytic function F in Ω.

4.1.3 Cauchy’s theorem for a rectangle

There are some notes in this section:

R is the rectangle in C, R “ tx ` iy P C : a ď x ď b, c ď y ď du. And BR is

boundary curve oriented in the counterclockwise direction.

Theorem 4.8 (Cauchy’s theorem for a rectangle). If f is analytic on an open set which

contains R, then
ż

BR

fpzqdz “ 0

Proof. For @ rectangle R̃ inside R, we define ZpR̃q “

ż

BR̃

fpzqdz. Then ZpRq “

ZpR1q ` ZpR2q if R is divided into Z1, Z2.

Since we can divide R into four equal rectangles, and find a rectangle with

|ZpRp1qq| ě 1
4
|ZpRq|. Then repeat the above steps and we obtain a sequence of

nested rectangles R Ą Rp1q Ą ¨ ¨ ¨ with the property

ZpRpnqq ě
1

4
|ZpRpn´1qq| ě ¨ ¨ ¨ ě

1

4n
ZpRq (4.3)

@δ ą 0, Dn P N s.t. Rpnq Ă tz P C : |z ´ z0| ă δu, @n ě N , where z0 is the limit of

Rpnq as n Ñ 8.

f is analytic in R ñ @ε, Dδ ą 0 s.t.

ˇ

ˇ

ˇ

ˇ

fpzq ´ fpz0q

z ´ z0
´ f 1pz0q

ˇ

ˇ

ˇ

ˇ

ă ε, @z with |z ´ z0| ă δ (4.4)

We assume that δ satisfies both conditions. We have

ZpRpnqq “

ż

BRpnq

fpzqdz “

ż

BRpnq

rfpzq ´ fpz0q ´ pz ´ z0qf
1pz0qsdz
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ñ |ZpRpnqq| ď ε

ż

BRpnq

|z ´ z0|dz by 4.4

Let dn be the length of diagonal of Rpnq, Ln be the length of its perimeter. Then

|z ´ z0| ď dn, @z P BRpnq.

ñ |ZpRpnqq| ď εdnLn “ ε
D

2n
¨
L

2n
where D, L are the diameter and perimeter of

R.

ñ |ZpRq|
4.3
ď 4n|ZpRpnqq| ď εDL ñ ZpRq “ 0 since ε is arbitrary.

We will next prove the following stronger theorem:

Theorem 4.9 (stronger version of Cauchy’s theorem for a rectangle). Let f be an-

alytic on R1 “ Rztψ1, ¨ ¨ ¨ , ψmu,m P N. If lim
zÑψj

pz ´ ψjqfpzq “ 0, @1 ď j ď m, then
ż

BR

fpzqdz “ 0.

Proof. WLOG, we may assume f is not analytic at only one point ψ P R. If we

put psi into a small rectangle S0, then the previous theorem tells us
ş

BR
fpzqdz “

ş

BS0
fpzqdz.

@ε ą 0, we may choose S0 small enough such that |fpzq| ď
ε

|z ´ ε
, @z P BS0

ñ |

ż

BR

fpzqdz ď ε

ż

BS0

|dz|

|z ´ ψ|
ď ε

1
l
2

¨ 4l “ 8ε

ñ
ş

BR
fpzqdz “ 0 since ε is arbitrary.

4.1.4 Cauchy’s Theorem for a disk

∆ :“ tz P C : |z ´ z0| ă Ru where R ą 0.

Theorem 4.10 (Cauchy’s Theorem for a disk). If f is analytic in an open disk ∆, then
ş

γ
fpzqdz “ 0 for closed curve γ in ∆.

Proof. Suppose the center of ∆ is z0 “ x0 ` iy0, z “ x ` iy. We define

F pzq “

ż

γ

fpzqdz
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where γ is the horizontal line segment from z0 to px, y0q added with vertical line

segment from px, y0q to z. We have

BF

By
“ lim

δyÑ0

F px, y ` δyq ´ F px, yq

δy
“ lim

δyÑ0

1

δy

ż

δγ

fpzqdz “ ifpzq (4.5)

By Cauchy’ theorem on rectangles, one has F pzq “ ´
ş

γ̃
fpzqdz, where γ̃ is the

vertical line segment from z0 to px0, yq added with horizontal line segment from

px0, yq to z.

Similarly,
BF

Bx
“ fpzq.

ñ
BF

Bx
“ ´i

BF

By
ñ F is analytic in ∆ with derivative f . By Fundamental

Theorem 4.5 of Calulus ñ
ş

γ
fpzqdz “ 0 for @ closed curve in ∆.

Here is a stronger version.

Theorem 4.11 (stronger version of Cauchy’s Theorem for a disk). Let f be analytic

in a region ∆1 “ ∆ztψ1, ¨ ¨ ¨ , ψmu with m P N. If f satisfies lim
zÑψj

pz ´ψjqfpzq “ 0, @1 ď

j ď m, then
ż

γ

fpzqdz “ 0, @γ closed in ∆1

Proof. It is similar to the above proof.

For the case no ψj lies on x “ x0 and y “ y0, we can find a similar curve γ with

last segment is a vertical one. Let F pzq “
ş

γ
fpzqdz. And continue the process of

proof of the previous theorem.

For the case that D ψj lies on the lines x “ x0, y “ y0, we actually can move the

center to another point s.t. no ψj lies on the lines x “ x1
0, y “ y1

0.
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4.2 Cauchy’s integral formula

4.2.1 Index of a point with resect to a closed curve

Lemma 4.12. If the piecewise differentiable closed curve γ does not pass through z P C,

then the value of the integral
ş

γ
dζ
ζ´z

is a multiple of 2πi.

Proof. γ : ζ “ ζptq, α ď t ď β. hptq “
şt

α
ζ1psq

ζpsq´z
ds.

z P γ ñ h is defined and continuous on rα, βs. For all t s.t. ζ 1ptq is continuous,

we have

h1ptq “
ζ 1ptq

ζptq ´ z
ñ

d

dt

“

e´hptqpζptq ´ zq
‰

“ 0

So e´hptqpζptq ´ zq is constant on rα, βs.

Then ehptq “
ζptq ´ z

ζpαq ´ z
ñ ehpβq “ 1 ñ hpβq P t2kπi : k P Zu.

The index of the point z w.r.t. the closed curve γ is the number

npγ, zq “
1

2πi

ż

γ

dζ

ζ ´ z

n is also called the winding number.

Theorem 4.13. Let γ be a piecewise differentiable closed curve. The function z ÞÑ npγ, zq

is constant on each connected set of Czγ, and zero if this set is unbounded.

Proof. Define f : Czγ Ñ γ, z ÞÑ npγ, zq “
1

2πi

ż

γ

dζ

ζ ´ z
.

Then

|fpzq ´ fpz0q| “
1

2π

ˇ

ˇ

ˇ

ˇ

ż

γ

z ´ z0
pζ ´ zqpζ ´ z0q

dζ

ˇ

ˇ

ˇ

ˇ

ď
|z ´ z0|

2π

ż

γ

1

|ζ ´ z| ¨ |ζ ´ z0|
|dζ|

ñ f is continuous on each open connected set of Czγ. Let Ω be any open con-

nected set of Czγ. We have fpΩq is connected
fpΩqĂZ

ùùùùùñ fpΩq contains at most one

point ñ f is constant on Ω.

26



If |z| is sufficient large, D a disk of radius R, Bp0, Rq, s.t. γ Ă Bp0, Rq but

z R Bp0, Rq. Cauchy’s theorem for a disk 4.10 tells us that fpzq “ npγ, zq “ 0. So it

is zero if this set is unbounded.

Lemma 4.14. Let z1, z2 be two points on a closed curve γ and 0 R γ.

Suppose z1 in the lower half space and z2 in upper half space. If γ1 X tpx, 0q : x ď

0u “ H, and γ2 X tpx, 0q : x ě 0u “ H, then npγ, 0q “ 1.

Remark 4.15. One method to prove this lemma is to create two segment from zi

to the point in the unit circle. By divide the curve into two parts, we can easily

remove the part of previous curve by using the theorem 4.13, since 0 is in the

unbounded set.

In this proof, we can find that Theorem 4.13 is such powerful that we can

change any curve to a more simple curve easily!

4.2.2 Cauchy’s integral formula

Theorem 4.16 (Cauch’s integral formula). Suppose that f is analytic in an open disk

△, and let γ be a closed curve in △. For @z R γ,

npγ, zqfpzq “
1

2πi

ż

γ

fpζq

ζ ´ z
dζ

where npγ, zq is the index of z w.r.t. γ.

Proof. If z R △, The both sides of the equation is 0.

So we may assume z P △ and z R γ. Define F : △ztzu Ñ C, ζ ÞÑ
fpζq ´ fpzq

ζ ´ z
.

Then F is analytic in △ztzu, and lim
ζÑz

pζ ´ zqF pζq.

By Cauchy’s Theorem 4.9 ñ
ş

γ
F pζqdζ “ 0 ñ

ż

γ

fpζq

ζ ´ z
dζ “ fpzq

ż

γ

1

ζ ´ z
dζ “

fpzq ¨ 2πi ¨ npγ, zq
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Remark 4.17. This proof let us find that for a good-enough function, its integral

over a closed curve is a constant.

The theorem still holds if f is analytic except at a finite number of ζj s.t.

lim
ζÑζj

pζ ´ ζjqfpζq “ 0

and z ‰ ζj for each j, since Cauchy’s theorem is still applicable.

Theorem 4.18 (The mean value property for analytic functions). f is analytic in a

region Ω which contain Bpz, Rq. Then

fpzq “
1

2π

ż 2π

0

fpz ` Reiθqdt

Proof. The previous theorem 4.16 ñ

fpzq “
1

2πi

ż

|ζ´z|“R

fpζq

ζ ´ z
dζ

ζ“z`Reit

ùùùùùùù
1

2π

ż 2π

0

fpz ` Reitqdt

If f is analytic in an open disk △, and γ is a closed curve in △. And npγ, zq “ 1.

Then

fpzq “
1

2πi

ż

γ

fpζq

ζ ´ z
dζ

This is usually referred to as Cauchy’s integral formula
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4.2.3 Higher derivatives

Lemma 4.19. Let Ω Ă C be a region and γ be an arc in Ω. If φ is continuous on γ, then

the function

Fnpzq :“

ż

γ

φpζq

pζ ´ zqn
dζ

is analytic in each of the regions Ωzγ, and its derivative is F 1
npzq “ nFn`1pzq

Proof. We prove it by induction.

The lemma is true if n “ 0: F0pzq “
ş

γ
φpζqdζ and F 1

0pzq “ 0 “ 0 ¨ F1pzq.

We suppose that the lemma holds for n ´ 1 with n P N: @ continuous φ on γ,

Fn´1 is analytic in Ωzγ and F 1
n´1pzq “ pn ´ 1qFnpzq, @z P Ωzγ.

Fix z0 P Ωzγ. For @z P Bpz0,
δ
2
q, withBpz0, δq Ă Ωzγ, we have |ζ´z| ą δ

2
, @ζ P γ.

For @ continuous φ on γ,

Fnpzq ´ Fnpz0q “

ż

γ

φpζqpζ ´ z ` z ´ z0q

pζ ´ zqnpζ ´ z0q
dζ ´

ż

γ

φpζq

pζ ´ z0qn
dζ

“

„
ż

γ

φpζq

pζ ´ zqn´1pζ ´ z0q
dζ ´

ż

γ

φpζq

pζ ´ z0qn´1pζ ´ zq
dζ

ȷ

` pz ´ z0q

ż

γ

φpζqdζ

pζ ´ zqnpζ ´ z0q

Let ψpζq “
ψpζq

ζ ´ z0
, which is continuous except γ.

Using the induction condition to ψ, we can finish the proof.

Theorem 4.20. An analytic function on a region Ω has derivatives of all orders which

are analytic in Ω. More precisely, @z0 P Ω, choose Bpz, δq Ă Ω and a circle C Ă Bpz0, δq

with center z0. For @ z in the interior of C, Cauchy’s integral formula gives

fpzq “
1

2πi

ż

C

fpζq

ζ ´ z
dζ
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Then the previous lemma implies f 1pzq “
1

2πi

ż

C

fpζq

pζ ´ zq2
dζ is analytic in the interior of

C. More generally, for @n P N,

f pnqpzq “
n!

2πi

ż

C

fpζq

pζ ´ zqn`1
dζ (4.6)

4.2.4 Consequences of Cauchy

Theorem 4.21 (Morera’s Theorem). If f is continuous in a region Ω, and if
ş

γ
fpzqdz “

0 for @ closed curve γ in Ω. Then f is analytic in Ω.

Proof. We proved in Corollary 4.7 that under the hypothesis of theorem, f “ F 1

where F is analytic in Ω. The last theorem ñ f is analytic.

Suppose f is analytic in a disk, Bpz0, Rq, and bounded on the circle γ given by

|z ´ z0| “ R. Then @z P γ, |fpzq| ď M for some M ě 0. By p4.6q,

|f pnqpzq| ď
n!

2π

ż

C

|fpζq|

|ζ ´ z0|n`1
|dζ| ď

n!

2π
¨
M

Rn`1
¨ 2πR “ MR´nn! (4.7)

This inequality is known as Cauchy’s estimate.

Theorem 4.22 (Liouville’s Theorem). A bounded entire function (i.e. analytic in C) is

constant.

Proof. Suppose |fpzq| ď M , @z P C. Cauchy’s estimate ñ

b|f 1pzq| ď
M

R
, @z P C, @R ą 0 (4.8)

RÑ8
ùùùñ f 1pzq “ 0 for z P C ñ f “ 0.
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Theorem 4.23 (Fundamental Theorem for Algebra). Every polynomial of degree n ě

1 has n roots.

Proof. It suffices to prove it has at least one root.

Suppose P pzq “ anz
n ` ¨ ¨ ¨ a1z ` a0 with a0 ‰ 0 does not have a root.

Then fpzq :“ 1
P pzq

is an entire function. As z Ñ 8, lim
|z|Ñ8

|P pzq|

|z|n
“ |an| ñ

lim
|z|Ñ8

1

|P pzq|
“ 0.

So f is bounded. By Liouville’s Theorem, f is a constant. Where f “ fp8q “ 0.

That causes contradiction.

Theorem 4.24 (Power series). If f is analytic in a region Ω which contains a closed disk

Bpz0, Rq, then f has a power series expansion at z0,

fpzq “

8
ÿ

n“0

f pnqpz0q

n!
pz ´ z0qn, @z P Bpz0, Rq (4.9)

Proof. @z P Bpz0, Rq, @ζ with |ζ ´ z0| “ R.

1

ζ ´ z
“

1

pζ ´ z0q ´ pz ´ z0q

“
1

ζ ´ z0
¨

1

1 ´ z´z0
ζ´z0

“
1

ζ ´ z0

8
ÿ

n“0

ˆ

z ´ z0
ζ ´ z0

˙n

“

8
ÿ

n“0

pz ´ z0q
n

pζ ´ z0qn`1

(4.10)

This series converges uniformly in ζ with |ζ ´ z0| “ R.
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For @z P Bpz, Rq,

fpzq “
1

2πi

ż

|ζ´z|“R

fpζq

ζ ´ z
dζ

“
1

2πi

ż

|ζ´z|“R

fpζq

8
ÿ

n“0

pz ´ z0q
n

pζ ´ z0qn`1
dζ

uniformly
ùùùùùùù

8
ÿ

n“0

1

2πi

ż

|ζ´z|“R

fpζq

pζ ´ z0qn`1
dζ ¨ pz ´ z0qn

p4.6q
“

8
ÿ

n“0

f pnqpz0q

n!
pz ´ z0q

n

(4.11)

4.3 Local properties of analytic functions

4.3.1 Removable Singularities and Taylor’s Theorem

We remarked that Cauchy’s integral formula holds if f is analytic except at a

finite number of point ζj s.t. lim
ζÑζj

pζ´ζjqfpζq “ 0. We will prove f can be extended

to an analytic function in △. In other word, ζj are removable singularities.

Theorem 4.25 (Riemann’s Removable Singularities Theorem). Suppose that f is

analytic in the region Ω1 “ Ωztζ0u where Ω is also a region. Then there exists an analytic

function in Ω which coincides with f in Ω1 if and only if lim
zÑζ0

pz ´ ζ0qfpzq “ 0.

Proof. The uniqueness and "ñ" part is trivial since the extended function is con-

tinuous at ψ0.

"ð": Cauchy’s integral formula ñ

fpzq “
1

2πi

ż

C

fpζq

ζ ´ z
dζ, @z P △ and z ‰ ζ0 (4.12)
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Lemma 4.19 ñ the RHS of the last equation 4.12 is analytic in z P △. Then

f̂pzq “

$

’

’

&

’

’

%

fpzq, z ‰ ζ0

1

2πi

ż

C

fpζq

ζ ´ ζ0
dζ, z “ ζ0

(4.13)

is analytic in Ω.

We apply Theorem 4.25 to the function F pzq “
fpzq ´ fpζq

z ´ ζ
, where f is analytic

in a region Ω. Note that

lim
zÑζ

pz ´ ζqF pzq “ 0, lim
zÑζ

F pzq “ f 1pζq (4.14)

Theorem 4.25 ñ D analytic function f1 on Ω s.t.

f1pzq “

$

’

’

&

’

’

%

F pzq, z ‰ ζ0

f 1pζq, z “ ζ0

(4.15)

we may thus write fpzq “ fpζq ` pz ´ ζqf1pzq.

Repeating this process for f1, we get an analytic function f2 on Ω s.t.

f1pzq “ f1pζq ` pz ´ ζqf2pzq (4.16)

where

f2pzq “

$

’

’

&

’

’

%

f1pzq ´ f1pζq

z ´ ζ
, z ‰ ζ

f 1
2pζq, z “ ζ

(4.17)

Continuing the recursion, we have the general form

fn´1pzq “ fn´1pζq ` pz ´ ζqfnpzq (4.18)
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ñ

fpzq “ fpζq ` pz ´ ζqf1pζq ` ¨ ¨ ¨ ` pz ´ ζqn´1fnpζq ` pz ´ ζqnfnpzq (4.19)

Differentiating n times and setting z “ ζ ñ f pnqpζq “ n!fnpζq

We just prove Taylor’s Theorem

Theorem 4.26 (Taylor’s Theorem). If f is analytic in a region Ω, ζ P Ω, then we have

fpzq “ fpζq ` pz ´ ζqf 1pζq ` ¨ `
f pn´1qpζq

pn ´ 1q!
pz ´ ζqn´1 ` fnpzqpz ´ ζqn (4.20)

where fn is analytic in Ω. Moreover,

fnpzq “
1

2πi

ż

C

fpωq

pω ´ ζqnpω ´ zq
dω (4.21)

where C is a circle in Ω s.t. its interior △ is also in Ω and ζ, z P △

Proof. It suffices to prove the second part.

Cauchy’s integral formula ñ fnpzq “ 1
2πi

ş

C
fnpωq

ω´z
dω, @z P △.

For fnpzq, we substitute the expression from (4.20). The first term is

1

2πi

ż

C

fpωq

pω ´ ζqnpω ´ zq
dω (4.22)

The remaining terms have the following form, except for constant factors:

gkpζq “

ż

C

1

pω ´ ζqnpω ´ zq
dω, 1 ď k ď n (4.23)
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The lemma 4.19 applies to φpωq “
1

ω ´ z
, g1

kpζq “ kgk´1pζq, k P N, @ζ P △. So

g1pζq “

ż

C

1

pω ´ ζqpω ´ zq
dω

“
1

ζ ´ z

„
ż

C

1

ω ´ ζ
dω ´

ż

C

1

ω ´ z
dω

ȷ

“
1

ω ´ z
r2πi ´ 2πis “ 0

(4.24)

So gkpzq “ 0, @k P N, @z P △.

4.3.2 Zeros and poles

Theorem 4.27. If f is analytic in a region Ω and Da P Ω s.t. f pnqpaq “ 0 for @n P

N Y t0u, then f ” 0 in Ω.

Proof. Let Bpa,Rq be the disk s.t. Bpa,Rq Ă Ω. Let C “ BBp0, Rq.

Taylor’s theorem ñ fpzq “ pz ´ aqnfnpzq with

fnpzq “
1

2πi

ż

C

fpωq

pω ´ aqnpω ´ zq
dω, @n P N Y t0u, @z P Bpa,Rq (4.25)

Let M “ max
zPC

|fpzq|.

ñ|fnpzq| ď
1

2π
¨

M

RnpR ´ |z ´ a|q
¨ 2πR

ñ|fpzq| ď
|z ´ a|n

Rn
¨

MR

R ´ |z ´ a|
Ñ 0 as n Ñ 8, @z P Bp0, Rq

ñfpzq “ 0, @z P Bp0, Rq

Now define

E1 “
␣

z P Ω|f pnqpzq “ 0, @n P N Y t0u
(

E2 “ ΩzE1 “
␣

z P Ω|f pnqpzq ‰ 0, for some n P N Y t0u
(
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We just proved E1 is open. E2 is open because f pnq is continuous in Ω for @n P

N Y t0u. Ω is a region ñ either R1 “ H or R2 “ H.

The assumption of the theorem ñ E1 ‰ H ñ E1 “ Ω.

Let f be analytic in Ω which is not identically zero, fpaq “ 0 for some a P Ω.

The previous theorem implies D first N P N s.t. f pNqpaq ‰ 0. Taylor’s theorem

implies that fpaq “ pz´ aqNfNpzq where fN is analytic and fNpaq ‰ 0. We say that

a is a zero of order N of f .

fN is continuous ñ Dδ ą 0 s.t. fpzq ‰ 0 for @z P Bpa, δqzt0u.

So we have just proved an important result: Zeros of analytic functions are

isolated, or equivalently, we have a famous theorem:

Theorem 4.28 (Identity Theorem). If f and g are analytic in a region ω, and f “ g on

a set which has an accumulation point in Ω, then fpzq “ gpzq.

Corollary 4.29.

(1) If f ” 0 in a subregion of Ω and f is analytic in Ω, then f ” 0 in Ω.

(2) If f is analytic in Ω and vanishes on an arc in Ω which doesn’t reduce to a point,

then f ” 0 in Ω.

If f is analytic in a neighborhood of a, but perhaps not at a itself, then a is

called an isolated singularity of f .

If lim
zÑa

fpzq “ 8, then a is said to be a pole of f , and we set fpaq “ 8. Continuity

implies Dδ ą 0 s.t. fpzq ‰ 0 for @z P Bp0, δqztau. Thus, gpzq “
1

fpzq
is analytic in

Bpa, δqztau. lim
zÑa

pz ´ aqgpzq “ 0 ñ a is a removable singularity of g, and g has an

analytic extension with gpaq “ 0. g ı 0 ñ a is a zero of g with finite order. The

order of the pole of f at a is the order N of the zero of g at a.
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We can write

fpzq “ pz ´ aq´NfNpzq, @z P Bpa, δqztau (4.26)

where fN is analytic and nonzero in a neighborhood of a.

Definition 4.30. A function which is analytic in a region Ω except for (isolated)

poles is called a meromorphic function.

Example 4.31. If f and g are analytic in Ω and g ı 0, then f
g

is a meromorphic

function in Ω. (See the Identity Theorem 4.28)

Remark 4.32. The sum, the product and quotient (if denominator is not always

zero) of two meromorphic functions are meromorphic.

If f has a pole of order N at a, then pz ´ aqNfpzq is analytic at a, and Taylor’s

theorem 4.26 implies

pz ´ aqNfpzq “ bN ` bN´1pz ´ aq ` ¨ ¨ ¨ ` b1pz ´ aqN´1 ` φpzq ¨ pz ´ aqN (4.27)

where φ is analytic at a.

ñ fpzq “ bNpz´aq´N `bN´1pz´aq´pN´1q `¨ ¨ ¨`b1pz´aq´1 `φpzq, @z ‰ a. (4.28)

Theorem 4.33. If f is analytic in a neighborhood of a, but perhaps not at a itself, then

exactly one of the following 3 cases occurs:

(i) f ” 0 in this neighborhood.

(ii) D integer N P Z s.t. lim
zÑa

|z ´ a|α ¨ |fpzq| “

$

’

’

&

’

’

%

0, α ą N

8, α ă N
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(iii) neither lim
zÑa

|z´ a|α ¨ |fpzq| “ 0 for any α P R nor lim
zÑa

|z´ a|α ¨ |fpzq| “ 8 for any

α P R

Proof.

À If lim
zÑa

|z´ a|α ¨ |fpzq| “ 0 for @α P R, then lim
zÑa

|z´ a|m ¨ |fpzq| “ 0 for @ integer

m ą α.

ñ pz ´ aqmfpzq has a removable singularity at a and vanishes at z “ a

ñ Either f ” 0 in Bpa, δqztau, which is case (i), or pz ´ aqmfpαq has a zero of

finite order k at a ñ lim
zÑa

|z ´ a|α ¨ |fpzq| “

$

’

’

&

’

’

%

0, α ą m ´ k

8, α ă m ´ k

Á If lim
zÑa

|z ´ a|α|fpzq| “ 8 for some α P R, then lim
zÑa

|z ´ a|n ¨ |fpzq| “ 8 for @

integer n ă α.

ñ pz ´ aqnfpzq has a pole of finite order l at a

ñ lim
zÑa

|z ´ a|α ¨ |fpzq| “

$

’

’

&

’

’

%

0, α ą n ` l

8, α ă n ` l

Remark 4.34. In case (ii), N may be called the algebraic order of f at a. N ą 0 if

a is a pole, N ă 0 if a is a zero, and N “ 0 if f is analytic at a and fpaq ‰ 0. The

order is always an integer, there is no analytic function which tends to 0 or 8, like

a fractional power of |z ´ a|.

In some sense, three cases depends on whether lim
zÑa

pz ´ aqNfpzq converges for

some N .

In case (iii), the point a is an essential isolated singularity.

Example 4.35. fpzq “ expp1
z
q has an essential isolated singularity z “ 0.

Theorem 4.36 (Weierstrass). An analytic function comes arbitarily close to any complex

value in every neighborhood of an essential singularity. Or equivalently, the codomain of

f on every neighborhood of an essential singularity is dense in C.
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Proof. Suppose the statement is false.

DA P C, δ ą 0 and ε ą 0 s.t.

|fpzq ´ A| ą δ, @z with 0 ă |z ´ a| ă ε (4.29)

ñ lim
zÑa

|z ´ a|α ¨ |fpzq ´ A| “ 8 for @α ă 0. ñ a is not an essential singularity of

fpzq ´ A.

The previous theorem ñ D β P R s.t. lim
zÑa

|z ´ a|β ¨ |fpzq ´A| “ 0, and we may

choose β ą 0.

Then lim
zÑa

|z´a|β ¨ |A| “ 0 ñ lim
zÑa

|z´a|β ¨ |fpzq| “ 0 by the triangular inequality.

So a is not an essential singularity of f , which causes contradiction!

So the statement has to be true.

Remark 4.37. If f is analytic in |z| ą R. We treat 8 as an isolated singularity.

Removable singularity, pole or essential singularity of f at 8 is defined according

to gpzq “ fp1
z
q at z “ 0.

4.3.3 The Local Mappings

Theorem 4.38 (The Argument Principle). Let f be analytic in a disk △ s.t. f does

not vanish identically. Let zj be the zeros of f , each zero being counted as many times as

its order indicates. For every closed curve γ in △ which does not pass through a zero,

we have
ÿ

j

npγ, zjq “
1

2πi

ż

γ

f 1pzq

fpzq
dz (4.30)

where the sum has only a finite number of terms with nonzero value.

Proof.

Case I: f has exactly n zeros z1, ¨ ¨ ¨ , zn.
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By repeated application of Taylor’ Theorem 4.26, we can write

fpzq “ pz ´ z1qpz ´ z2q ¨ ¨ ¨ pz ´ znqgpzq, z P △ (4.31)

where g is analytic in △ and gpzq ‰ 0 for @z P △. ñ

f 1pzq

fpzq
“

1

z ´ z1
`

1

z ´ z2
` ¨ ¨ ¨ `

1

z ´ zn
`
g1pzq

gpzq
, @z P △ and z ‰ zj (4.32)

Cauchy’ Theorem 4.10 ñ

ż

γ

g1pzq

gpzq
dz “ 0 ñ

1

2πi

ż

γ

f 1pzq

fpzq
dz “

n
ÿ

j“1

npγ, zjq (4.33)

Case II: f has infinitely many zeros in △. Then γ is inside a concentric disk △1

smaller than △.

f ı 0 ñ There is only a finite number of zeros in △1.

So we can apply (4.33) to the disk △1 ñ (4.30) holds since npγ, zjq “ 0 if z R

△1.

Remark 4.39.

• The function ω “ fpzq maps γ onto a closed curve Γ in the ω-plane, and we

have
ż

Γ

dω

ω
“

ż

γ

f 1pzq

fpzq
dz (4.34)

Then (4.30) can be interpreted as npΓ, 0q “
ř

j

npγ, zjq.

• The most useful application of the theorem is to the case when γ is a circle

(or more generally a simple closed curve). So that

npγ, zq “

$

’

’

&

’

’

%

1, z is inside γ

0, z is outside γ
Then (4.30) yields a formula for the total num-
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ber of zeros enclosed by γ.

Let a P C. Apply the previous theorem to fpzq ´ a

ÿ

j

npγ, zjpaqq “
1

2πi

ż

γ

f 1pzq

fpzq ´ a
dz

where zjpaq are zeros of f ´ a (or roots of fpzq “ a), and γ is a closed curve in △

which doesn’t pass zjpaq ñ

npΓ, aq “
ÿ

j

npγ, zjpaqq

If a and b are in the same region determined by Γ, then npΓ, aq “ npΓ, bq ñ

ÿ

j

npγ, zjpaqq “
ÿ

j

npγ, zjpbqq (4.35)

If γ is a circle, then f takes the values a and b equally many times inside γ,

counted as many times as their orders indicate.

We have the equation that

1

2πi

ż

γ

f 1pzq

fpzq ´ a
dz “ npΓ, aq “ npΓ, bq

“
1

2πi

ż

Γ

dω

ω ´ b
“

1

2πi

f 1pzqdz

fpzq ´ b

“ cardtz inside γ : fpzq “ bu

(4.36)

Remark 4.40. We can find such a, b easily. If ω R Γ, then there exists ε s.t.

Bpω, εq Ă CzΓ which is what we need.

Theorem 4.41. Suppose f is analytic at z0, and fpzq ´ ω0 has a zero of order N P N at

z0. Then for @ε ą 0 sufficiently small, Dδ ą 0 s.t. for @a with |a ´ ω0| ă δ, the equation
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fpzq “ a has exactly N roots in the disk |z ´ z0| ă ε

Proof. We choose ε ą 0 s.t.

(1) f is analytic in |z ´ z0| ď ε

(2) z0 is the only zero of fpzq ´ ω0 in this disk.

(3) f 1pzq ‰ 0 for @z with 0 ă |z ´ z0| ă ε

Let γ be the circle |z ´ z0| ă ε and Γ “ f ˝ γ.

ω0 R Γ ñ Dδ ą 0 s.t. Bpω0, δq X Γ “ H.

The consequence of the argument principle 4.38, i.e. (4.36) ñ f takes all values

a P Bpω0, δq the same number of times N inside γ, since fpzq “ ω0 has exactly N

coiciding roots inside γ.

(3) ñ all roots fpzq “ a with a P Bpω0, δqztω0u are simple

Corollary 4.42 (open mapping theorem). A nonconstant analytic function maps open

sets onto open sets.

Proof. The previous theorem ñ @ε ą 0, fpBpz0, εqq Ą Bpω0, δq

Corollary 4.43. If f is analytic at z0 with f 1pz0q ‰ 0. It maps a neighborhood of z0

conformally and topologically onto a region.

Proof. This is the case N “ 0. The previous theorem ñ There is 1-1 corresponding

between the disk |ω´ω0| ă δ and an open subset of |z´z0| ă ε. The open mapping

theorem 4.42 ñ f´1 is continuous ñ f is a topological map. And f is conformal

on |z ´ z0| ă ε

Remark 4.44. Under the assumption of Corollary 4.43, f´1 is continuous ñ f´1 is

analytic ñ f´1 is conformal map.

If f : Ω Ñ C is 1-1 and analytic, Theorem 4.41 can hold only with N “ 1 ñ

f 1pzq ‰ 0 for @z P C. So this condition is stronger than the conformal condition.
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4.3.4 The Maximum Principle

Theorem 4.45 (The maximum principle). If f is analytic and nonconstant in a region

Ω, then its modules |f | has no maximum in Ω.

Proof. @z0 P Ω, the open mapping theorem 4.42 ñ D an open disk |ω ´ fpz0q| ă δ

contained in F pΩq. In this disk, D ω s.t. |ω| ą |fpz0q| ñ |fpz0q| is not the maximum

of |f |.

Theorem 4.46 (The maximum principle). If f is defined and continuous on a closed

bounded set E and analytic in the interior of E, then the maximum of |f | on E is assumed

on the boundary of E.

Remark 4.47. The maximum principle can also be proved by the mean value the-

orem 4.18 for analytic functions.

Theorem 4.48 (Schwarz Lemma). If f is analytic in the disk |z| ă 1 and satisfies

fp0q “ 0, |fpzq| ď 1, @z P Bp0, 1q, then |fpzq| ď |z| and |f 1p0q| ď 1. Furthermore, if

|fpzq| “ |z| for some z ‰ 0, or if |f 1p0q| “ 1, then fpzq “ cz where c P C with |c| “ 1.

Proof. We define gpzq “

$

’

’

&

’

’

%

fpzq

z
, z ‰ 0, z P Bp0, 1q

f 1p0q, z “ 0

.

Then g is analytic with g1p0q “
f 1p0q

2
using Taylor series (4.20).

The maximum principle implies that |gpzq| ď
1

r
, @z P Bp0, rq where 0 ă r ă 1.

Setting r Ñ 1, we get |gpzq| ď 1, @|z| ă 1.

If |fpzq| “ |z| for some z ‰ 0, or |f 1p0q| “ 1, then |g| “ 1 attains its maximum

at some interior points. By maximum principle, g has to be a constant.

Remark 4.49. For a general analytic function f : Bp0, Rq Ñ Bp0,Mq, z0 ÞÑ w0.

Let T pzq “

z
R

´ z0
R

1 ´ z̄0
R

¨ z
R
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Spωq “

ω
M

´ ω0

M

1 ´ ω̄0

M
¨ ω
M

.

Then S ˝ f ˝T´1 satisfies S ˝ f ˝T´1p0q “ 0 and |S ˝ f ˝T´1pzq| ď 1
Schwarz lemma

ùñ

|S ˝ f ˝ T´1pζq| ď |ζ|.

ñ |S ˝ fpzq| ď |T pzq| ñ

ˇ

ˇ

ˇ

ˇ

Mpfpzq ´ ω0q

M2 ´ ω̄0fpzq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

Rpz ´ z0q

R2 ´ z̄0z

ˇ

ˇ

ˇ

ˇ

, @z P Bp0, Rq

4.4 The General Form of Cauchy’s Theorem

4.4.1 Chains and Cycles

Let Ω Ă C be open. Let γj : rαj, βjs Ñ Ω be piecewise continuously differen-

tiable curves in Ω. The sum γ1 ` γ2 ` ¨ ¨ ¨ ` γN , which need not be a curve is called

a chain. The integral of a continuous f in Ω along this chain is defined by

ż

γ1`γ2`¨¨¨`γN

f “

N
ÿ

j“1

ż

γj

f. (4.37)

Two chains are identical if they yield the same line integrals for all function f .

A chain is a cycle if it can be represented as a finite sum of closed curves.

4.4.2 Simple connectivity and homology

A region is simply connected if its complement w.r.t. Ĉ is connected.

Example 4.50. A disk, a half plane, a parallel strip are simply connected.

CzBp0, 1q is not simply connected since its complement w.r.t. Ĉ consists of

Bp0, 1q and 8.

Theorem 4.51. A region Ω Ă C is simply connected iff npγ, zq “ 0 for all cycles γ in Ω

and all points z R Ω.
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Proof. "ñ": @ cycle γ Ă Ω, ĈzΩ must be in one of the regions in Ĉzγ since ĈzΩ is

connected.

8 P ĈzΩ ñ CzΩ is in the unbounded region of Czγ. By theorem 4.13 npγ, zq “

0, @z P CzΩ.

"ð": Suppose Ω is not simply connected, i.e. , ĈzΩ is not connected. Let

ĈzΩ “ A \ B with A,B disjoint closed sets.

Suppose that 8 P B. Then A is the bounded set. δ is defined to be the distance

between A and B. The δ ą 0. Cover A with a net of squares Ω of side less than
δ

?
2

.

Suppose z0 P A lies at the center of a square cycle γ :“
ř

Q:QXA‰0

BΩ.

z0 is only in one of these squares ñ npγ, z0q “ 1.

Since sides of squares are less than
δ

?
2

, γ X B ‰ H.

γ X A “ H after cancellations of the multiple sides.

ñ γ P Ω with npγ, z0q “ 1. That’s a contradiction.

A cycle γ in an open set Ω is said to be homologous to zero w.r.t. Ω if npγ, zq “

0 for @z P CzΩ.

In symbols, we write γ „ 0pmodΩq. So γ1 „ γ2 means γ1 ´ γ2 „ 0pmodΩq.

4.4.3 The general form of Cauchy’s theorem

Theorem 4.52 (General form of Cauchy’s theorem). If f is analytic in an open set Ω,

then
ş

γ
fpzqdz “ 0 for @ cycle γ which is homologous to zero in Ω.

In combination with the theorem 4.51 in the previous section, we have

Corollary 4.53. If f is analytic in a simply connected region Ω, then
ş

γ
fpzqdz “ 0 for

all cycles γ in Ω.

In combination with the fundamental theorem 4.5 of Calculus for integrals in

C, we have
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Corollary 4.54. If f is analytic in a simply connected region Ω, then D an analytic func-

tion F in Ω s.t. F 1pzq “ fpzq for @z P Ω.

Corollary 4.55. If f is analytic in a simply connected region Ω and fpzq ‰ 0 for @z P Ω,

then it is possible to define single-valued analytic branches of ln fpzq and n
a

fpzq in Ω

Proof.
f 1pzq

fpzq
is analytic in Ω

Corollary4.54
ùñ D an analytic function F s.t. F 1pzq “

f 1pzq

fpzq
,

@z P Ω.

ñ
d

dz

“

fpzqe´F pzq
‰

“ 0, @z P Ω ñ fpzq “ C ¨ eF pzq for some C P Czt0u.

Choose z0 P Ω and one of the infinite values of ln fpz0q.

ñ exp rF pzq ´ F pz0q ` ln fpz0qs “
fpzq

C
¨ e´F pz0q “ fpzq, @z P Ω.

We may define ln fpzq “ F pzq ´ F pz0q ` ln fpz0q, n
a

fpzq “ exp

„

1

n
ln fpzq

ȷ

.

Proof of Cauchy’s Theorem 4.52. Let γ be a cycle in Ω satisfying γ „ 0 mod Ω. The

theorem 4.13 implies that

E :“ tz P Czγ : npγ, zq “ 0u is open

We define g : Ω ˆ Ω Ñ C by

gpz, ζq :“

$

’

’

&

’

’

%

fpzq ´ fpζq

z ´ ζ
, z ‰ ζ

f 1pzq, z “ ζ

(4.38)

Taylor’s theorem implies g is continuous in pz, ζq P Ω ˆ Ω. For @ζ0 P Ω, gpz, ζ0q is

analytic in Ω since lim
zÑζ0

pz ´ ζ0qgpz, ζ0q “ 0.

Define hpzq “

$

’

’

’

&

’

’

’

%

1

2πi

ż

γ

gpz, ζqdζ, z P Ω

1

2πi

ż

γ

fpzq

z ´ ζ
dζ, z P E

. γ „ 0 ñ npγ, zq “ 0, @z P CzΩ ñ

CzΩ Ă E ñ Ω Y E “ C. So h is defined on C.
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These two expressions are equal on Ω X E since npγ, zq “ 0, @z P Ω X E.

Lemma 4.19 implies that h is analytic in E.

The last exercise in Homework 6 ñ h is analytic on Ω ñ h is entire.

npγ, zq “ 0 if |z| is sufficiently large ñ z P E if |z| large enough.

f is bounded on γ ñ hpzq Ñ 0 as |z| Ñ 8 ñ h is bounded and thus h ” 0. By

Liouville’s Theorem 4.22,
1

2πi

ż

γ

gpz, ζqdζ “ 0, @z P Ωzγ. Then

npγ, zqfpzq “
1

2πi

ż

γ

fpζq

ζ ´ z
dζ, @z P Ωzγ (4.39)

Equation 4.39 is the generalized version of Cauchy’s integral formula.

Let z0 P Ωzγ. Define h1pzq “ pz ´ z0qfpzq. Then h1 analytic and

ż

γ

fpzqdz “

ż

γ

h1pzq

z ´ z0
dz

(4.39)
“ 2πi ¨ npγ, z0q ¨ h1pz0q “ 0 (4.40)

4.5 The Calculus of Residues

4.5.1 The Residue Theorem

Suppose f is analytic in a region Ω except for the isolated singularity at a.

Consider a circle C centered at a and contained in Ω. The residue of f at a is

defined by

Resz“afpzq :“
1

2πi

ż

C

fpzqdz (4.41)

It is independent of choice of circle followed from the general Cauchy’s theorem

4.52.

Now suppose f is analytic in a region Ω except for finitely many singularities
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aj . Let γ be cycle in Ω1 “ Ωzta1, ¨ ¨ ¨ , anu which is homologous to zero w.r.t. Ω.

Then

γ „

N
ÿ

j“1

npγ, ajqCj mod Ω1 (4.42)

where Cj is any circle centered at aj and contained in Ω1.

The general Cauchy’s theorem 4.52 implies

ż

γ

fpzqdz “

N
ÿ

j“1

npγ, ajq

ż

Cj

fpzqdz (4.43)

So
1

2πi

ż

γ

fpzqdz “

N
ÿ

j“1

npγ, ajqResz“ajfpzq.

We just proved the residue theorem under the assumption that there are only

a finite number of singularities

Theorem 4.56 (The Residue Theorem). Let f be analytic except for countably many

isolated singularities aj in a region Ω. Then

1

2πi

ż

γ

fpzqdz “

N
ÿ

j“1

npγ, ajqResz“ajfpzq (4.44)

for any circle γ which is homologous to zero in Ω and does not pass through any of aj .

Proof. We already proved the case when number of singularities is finite. For the

general case,

it is enough to prove that npγ, ajq “ 0 except for a finite number of aj .

Let E :“ tz P Czγ : npγ, zq “ 0u.

ThenE is open by theorem 4.13 and contains all points outside of a large circle.

ñ Ec is compact. So Ec contains a finite number of the isolated points aj ñ

npγ, ajq ‰ 0 only for a finite number of aj .

Remark 4.57.
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(1) In the applications it is often the case that each npγ, ajq P t0, 1u.

(2) When f has essential singularity, there is usually no simple method to com-

pute residues.

(3) If f has a pole of order N at a, we proved in §3.2 that

pz´aqNfpzq “ bN`bN´1pz´aq`¨ ¨ ¨`b1pz´aqN´1`φpzqpz´aqN , z ‰ a (4.45)

where φpzq is analytic at a and bN ‰ 0. So we have

Resz“afpzq “ b1 “
1

pN ´ 1q!
¨
dN´1

dzN´1

“

pz ´ aqNfpzq
‰

(4.46)

This is because when the term b1pz ´ aq´1 is omitted, the remainder of the

RHS of (4.46) is a derivative.

In particular, if fpzq “
gpzq

hpzq
, h has a simple zero at a and gpaq ‰ 0, then

Resz“afpzq “ lim
zÑa

„

gpzq

hpzq
pz ´ aq

ȷ

“ lim
zÑa

gpzq
hpzq´hpaq

h´a

“
gpaq

h1paq
(4.47)

Example 4.58. Compute
ş

|z|“1
eiz

z3
dz.

Solution. The only pole is at z “ 0 with order 3. The residue theorem 4.56 implies:

ż

|z|“1

eiz

z3
dz “ 2πiResz“0fpzq “ 2πi

1

2!

d2

dz2

„

z3 ¨
eiz

z3

ȷ

|z“0 “ ´πi (4.48)

Or one can use Taylor’s series (4.20)

ż

|z|“1

eiz

z3
dz “

ż

|z|“1

1 ` iz ` `
pizq2

2
` ¨ ¨ ¨

z3
dz “ ´πi (4.49)
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4.5.2 The Argument Principle

Theorem 4.59 (The Argument Principle). If f is meromorphic in a region Ω with zeros

aj and poles bk. Then

1

2πi

ż

γ

f 1pzq

fpzq
dz “

ÿ

j

npγ, ajq ´
ÿ

k

npγ, bkq (4.50)

for every cycle γ which is homologous to zero in Ω and does not pass through any of zeros

and poles. The sums in (4.50) are finite, and multiple zeros and poles have to be repeated

as many times as their order indicates.

Proof. We assume that f has a finite number of zeros and poles, and denote that

number by K.

Let Nj be the order of the zero or pole of f at zj P ta1, a2, ¨ ¨ ¨ , b1, b2, ¨ ¨ ¨ u.

Define Ñj :“

$

’

’

&

’

’

%

Nj, zj is a zero

´Nj, zj is a pole

Let gpzq “ fpzq ¨

K
ź

j“1

pz ´ zjq
´Ñj . Then g only has removable singularities in Ω,

and we can view it as analytic in Ω. Moreover, gpzq ‰ 0 for @z P Ω.

fpzq “ gpzq ¨

K
ź

j“1

pz ´ zjq
Ñj implies that

f 1pzq

fpzq
“
g1pzq

gpzq
`

N
ÿ

j“1

Ñj

pz ´ zjq
, @z ‰ zj (4.51)
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Then
1

2πi

ż

γ

f 1pzq

fpzq
dz “

1

2πi

ż

γ

g1pzq

gpzq
dz `

K
ÿ

j“1

1

2πi

ż

γ

Ñj

z ´ zj
dz

“

K
ÿ

j“1

Ñj ¨ npγ, zjq

“
ÿ

j

npγ, ajq ´
ÿ

k

npγ, bkq

If f has infinite number of zeros or poles, the proof is the same as that of the

residue theorem. i.e. npγ, zq ‰“ 0 for finite many z zeros or poles.

Theorem 4.60 (Rouchē’s Theorem). Let γ be a cycle which is homologous to zero in a

region Ω s.t. npγ, zq P t0, 1u, @z P Ωzγ.

Suppose f, g are analytic in Ω, |fpzq ´ gpzq| ă |fpzq|, @z P γ. Then f and g have the

same number of zeros enclosed by γ.

Proof. First we have fpzq ‰ 0, gpzq ‰ 0 for z P γ.

Let ψpzq “
gpzq

fpzq
, z P γ. Then |ψpzq ´ 1| ă 1, @z P γ. For Γ “ ψpγq

ż

γ

ψ1pzq

ψpzq
dz “

ż

Γ

dω

ω
“ 2πi ¨ npΓ, 0q “ 0

since 0 is in the unbounded connected component of CzΓ.

The argument principle implies that 0 “
1

2πi

ż

γ

ψ1pzq

ψpzq
dz is equal to the differ-

ence of number of zeros of g and f .

The argument principle can be generalized to

Theorem 4.61 (The Argument Principle). Under the hypothesis of the argument prin-

ciple 4.59, and if h is analytic in Ω, then we have

1

2πi

ż

γ

hpzq
f 1pzq

fpzq
dz “

ÿ

j

npγ, ajqhpajq ´
ÿ

k

npγ, bkqhpbkq (4.52)
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Remark 4.62. In §5.3.3, we proved Theorem 4.41 that if f is analytic at z0, and

fpzq ´ ω0 has zero of order N at z0, then for ε small enough, there exists δ ą 0 s.t.

@ω with |ω ´ ω0| ă δ, fpzq “ ω has exactly N roots zjpωq in the disk |z ´ z0| ă ε. If

we apply (4.52) with hpzq “ z, we get

N
ÿ

j“1

zjpωq “
1

2πi

ż

|z´z0|“ε

z
f 1pzq

fpzq ´ ω
dz, @ω P Bpω0, δq (4.53)

For N “ 1, the inverse function f´1pωq can thus be represented by

f´1pωq “
1

2πi

ż

|z´z0|“ε

z
f 1pzq

fpzq ´ ω
dz, @ω P Bpω0, δq (4.54)

If we apply (4.52) with hpzq “ zm, we get

N
ÿ

j“1

zmj pωq “
1

2πi

ż

|z´z0|“ε

zmf 1pzq

fpzq ´ ω
dz, @ω P Bpω0, δq (4.55)

4.5.3 Evaluation of Definite integrals

À All integrals of the form
ş2π

0
Rpcos θ, sin θqdθ, where the integrand is a rational

function of cos θ and sin θ. The substitution z “ eiθ transform it into the line

integral
ż

|z|“1

Rp
z ` z´1

2
,
z ´ z´1

2i
q
dz

iz

It remains to determine the residues which correspond to the poles of the in-

tegrand inside tz : |z| ă 1u.
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Example 4.63. Compute
ż π

0

dθ

a ` cos θ
, a ą 1.

ż π

0

dθ

a ` cos θ
“

1

2

ż 2π

0

dθ

a ` cos θ

z“eiθ
“

1

a ` z`z´1

2

¨
dz

iz
“

1

i

ż

|z|“1

1

z2 ` 2az ` z
dz

“
1

i

ż

|z|“1

1
“

z ´ p´a `
?
a2 ´ 1q

‰

¨
“

z ´ p´a ´
?
a2 ´ 1q

‰dz

Note that | ´ a `
?
a2 ´ 1| “ 1

|a`
?
a2´1|

ă 1 and | ´ a ´
?
a2 ´ 1| ą 1.

Residue Theorem 4.56 implies that

ż π

0

dθ

a ` cos θ
“

1

i
¨ 2πiResz“´a`

?
a2´1fpzq

“ 2π ¨
1

´a `
?
a2 ´ 1 ´ p´a ´

?
a2 ´ 1q

“
π

?
a2 ´ 1

Á An integral of the form
ş8

´8
Rpxqdx converges if and only if in the rational

function R, the degree of denominator ě the degree of numerator+2 and has no

pole lies in R.

Ap´ρ, 0q Bpρ, 0q

Consider this semicircle γ. If ρ is large enough, γ encloses all poles of R in the

upper half-plane. It is easy to see that

lim
ρÑ8

ż

z“ρeit,0ďtďπ

Rpzqdz “ 0
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So we have
ż `8

´8

Rpxqdx “ 2πi
ÿ

yą0

Resx`iyRpzq.

Â

(a) The same method can be applied to
ż 8

´8

Rpxqeixdx, where the rational func-

tion has a zero of at least two at 8. Then |eiz| “ e´y ě 1 in the upper-half plane.

So
ż 8

´8

Rpxqeixdx “ 2πi
ÿ

yą0

Resx`iyRpzqeiz

(b) We now consider the case that R has only a simple zero at 8 and no pole

on R.

p´x1, 0q px2, 0q

p0, Y q

There exists M ą 0 and C ą 0 s.t. this rectangle all poles of R in the upper

half-plane if x1 ą M,x2 ą M , and Y ą M . |zRpzq| ď C if |z| ě M .

ˇ

ˇ

ˇ

ˇ

ˇ

ż

right vertical line
Rpzqeizdz

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż Y

0

C

|z|
e´ydy ď

C

x2

ż Y

0

e´ydy ď
C

x2

Similarly,
ˇ

ˇ

ˇ

ˇ

ż

left vertical line
Rpzqeizdz

ˇ

ˇ

ˇ

ˇ

ď
C

x1
ˇ

ˇ

ˇ

ˇ

ˇ

ż

upper horizontal line
Rpzqeizdz

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż x2

´x1

C

|z|
e´Y dx ď

Ce´Y

Y

ż x2

´x1

dx “
Ce´Y px1 ` x2q

Y

Fix x1 and x2, setting Y Ñ 8. Then

ˇ

ˇ

ˇ

ˇ

ˇ

ż x2

´x1

Rpxqeixdx ´ 2πi
ÿ

yą0

Resx`iyRpzqeiz

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

1

x1
`

1

x2

˙
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So
ż x2

´x1

Rpxqeixdx “ 2πi
ÿ

yą0

Resx`iyRpzqeiz

(c) R has only a single zero at 8 and a simple pole at 0. Suppose that Rpzqeiz “

B
z

` φpzq where φ is analytic at 0.

Then it is easy to use this curve to prove that

lim
δÑ0`

„
ż ´δ

´8

Rpxqeixdx `

ż 8

δ

Rpxqeixdx

ȷ

“ 2πi

«

ÿ

yą0

Resx`iyRpzqeiz `
B

2

ff

Denote this integral as P.V.
“ş8

´8
Rpxqeixdx

‰

, called Cauchy principle value of the

integral.

Example 4.64.

P.V.

ˆ
ż 8

´8

eix

x
dx

˙

“ 2πi ¨
1

2
“ πi

“ P.V.

ˆ
ż 8

´8

cos x

x
dx ` i

ż 8

´8

sin x

x
dx

˙

“ P.V.

ˆ
ż 8

´8

cos x

x
dx

˙

` i

ż 8

´8

sin x

x
dx

“ i ¨ 2

ż 8

0

sin x

x
dx

So we obtain
ż 8

0

sin x

x
dx “

π

2

Ã Calculate
ż 8

0

xαRpxqdx, where α P p0, 1q, Rpzq has a zero of order larger than 2

at 8, and at most a simple pole at 0. Then

ż 8

0

xαRpxqdx
x“t2
“ 2

ż 8

0

t2α`1Rpt2qdt (4.56)
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fpxq “ z2α is analytic in Cztiy : y ď 0u if we require arg fpxq P p´πα, 3παq.

Ap´ρ, 0q Bpρ, 0q

Applying residue theorem 4.56 to z2α`1Rpz2q and take limits we have

ż 8

´8

z2α`1Rpz2qdz “ 2πi
ÿ

yą0

Resx`iyz
2α`1Rpz2q

And

ż 8

´8

z2α`1Rpz2qdz “

ż 8

0

z2α`1Rpz2qdz `

ż 8

0

p´zq2α`1Rpz2qdz

“ p1 ´ e2απiqp1 ´ e2απiq

ż 8

0

z2α`1Rpz2qdz

So
ż 8

0

xαRpxq “
2

1 ´ e2απi
¨ 2πi ¨

ÿ

yą0

Resx`iyz
2α`1Rpz2q.

Example 4.65. Compute
ż 8

0

x
1
2

1 ` x2
dx.

ż 8

0

x
1
2

1 ` x2
dx “ 2

ż 8

0

t2

1 ` t4
“

ż 8

´8

t2

1 ` t4
dt

Take fpzq “
z2

1 ` z4
and apply Residue Theorem 4.56 to f , we have

ż 8

´8

t2

1 ` t4
“

ż 8

´8

fpzqdz “ 2πi
ÿ

yą0

Resx`yifpzq “ 2πirResexpp iπ
4

qf`Resexpp 3iπ
4

qf s “

?
2π

2
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4.6 Harmonic Functions

4.6.1 Definition and basis properties

A real-valued function upzq “ upx, yq in a region Ω is harmonic if it is in C2

and satisfying the Laplace’s equation

△u “
B2u

Bx2
`

B2u

By2
“ 0 (4.57)

We already know that if fpzq “ upx, yq ` ivpx, yq is analytic in Ω, then u and v

satisfy the Cauchy-Riemann equations, and are therefore harmonic in Ω.

If u is harmonic in Ω, then fpzq “
Bu

Bx
´ i

Bu

By
is analytic in Ω. This is because,

for U :“
Bu

Bx
, V “ ´

Bu

By
.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

BU

Bx
“

B2u

Bx2
“ ´

B2u

By2
“

BV

By

BU

By
“

B2u

BxBy
“

B2u

ByBx
“

BV

Bx

(4.58)

We may write the differential

fdz “

ˆ

Bu

Bx
´ i

Bu

By

˙

pdx ` idzq “

ˆ

Bu

Bx
dx `

Bu

By
dy

˙

` i

ˆ

Bu

Bx
dy ´

Bu

By
dx

˙

(4.59)

In this expression, the real part is du “
Bu

Bx
dx`

Bu

By
dy. And if u has a conjugate

harmonic function v, then the imaginary part is

dv “
Bv

Bx
dx `

Bv

By
dy “ ´

Bu

By
dx `

Bu

Bx
dy

In general, however, there is no (single-valued) conjugate function. We thus
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define
˚du :“ ´

Bu

By
dx `

Bu

Bx
dy (4.60)

and call ˚du the conjugate differential of du. We may write (4.59) as

fdz “ du ` i˚du (4.61)

Lemma 4.66. Let γ be a cycle in a region Ω s.t. γ „ 0 mod Ω. Then

ż

γ

˚du “ 0 (4.62)

Proof. (4.61) implies
ż

γ

fpzqdz “

ż

γ

du ` i

ż

γ

˚du.

Cauchy’s Theorem 4.52 implies
ş

γ
fpzqdz “ 0. And

ş

γ
du “ 0 since du is an

exact diffenrential.

Hence,
ş

γ
˚du “ 0.

Theorem 4.67. If Ω is simply connected and u is harmonic in Ω, then u has a (single-

valued) conjugate function v which uniquely determined up to additive constant.

Proof. The last lemma 4.66 and theorem 4.4 imply that there is a (single-valued)

function v s.t. ˚du “ dv i.e.

Bv

Bx
“ ´

Bu

Bx
,

Bv

By
“

Bu

Bx

So v is a conjugate function of u. (Notice that we use the property of simply

connection that every cycle in Ω is homologous to zero)

If v1 and v2 are two such harmonic functions, then f1 “ u ` iv1, f2 “ u ` iv2

are both analytic in Ω. So f1 ´ f2 “ ipv1 ´ v2q is analytic in Ω. The open mapping

theorem 4.42 implies f1 ´ f2 is a constant.
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Remark 4.68. We see that the open mapping theorem 4.42 has such power that it

gives a way to prove an analytic function with some closed property is constant.

Remark 4.69. The condition on simply connectness can not be removed. For in-

stance, upzq “ ln |z| is harmonic in Czt0u, but it cannot be written as the real part

of an analytic function since ln |z| “ Re ln z

4.6.2 The Mean-value Property

Theorem 4.70 (Mean-value Property). Let u be harmonic in a region Ω. If Bpz, Rq Ă

Ω, then

upzq “

ż 2π

0

upz0 ` Reiθqdθ (4.63)

Proof. The previous theorem 4.67 implies that u has a conjugate function v on

Bpz0, Rq. Consider the analytic function f “ u ` iv. The Cauchy integral formula

4.39 shows

fpz0q “
1

2πi

ż

|z´z0|“R

fpzq

z ´ z0
dz “

1

2π

ż 2π

0

fpz0 ` Reiθqdθ (4.64)

This theorem follows by taking the real part of the equation.

Theorem 4.71. If u is harmonic in Ω, and tz P C : 0 ă R1 ď |z ´ z0| ď R2u Ă Ω, then

1

2π

ż 2π

0

upz0 ` reiθqdθ “ α ln r ` β P rR1, R2s (4.65)

where α and β are constants

Proof. In polar coordinate pr, θq,

△ “
B2

Br2
`

1

r
¨

B

Br
`

1

r2
¨

B2

Bθ2
“ r´1 B

Br
pr ¨

B

Br
q ` r´2 B2

Bθ2
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Let Uprq “
ş2π

0
upz0 ` reiθqdθ. z ÞÑ upz0 ` zq is harmonic. Then

△Uprq “
1

2π

ż 2π

0

△upz0 ` reiθqdθ “ 0 (4.66)

Therefore,
B

Br

ˆ

r
BU

Br

˙

“ 0. Therefore, Uprq “ α ln γ ` β.

Theorem 4.72 (Maximal Principle of Harmonic Function). A nonconstant harmonic

function has neither a maximum nor a minimum in its region of definition.

Proof. Suppose u attains a maximum at z0 P Ω. DR ą 0 s.t. Bpz0, Rq Ă Ω. Suppose

Da P Bpz0, Rq s.t. upaq ă upz0q “ M .

The mean-value property implies

M “ upz0q “
1

2π

ż 2π

0

upz0 ` reiθqdθ ă M

by continuity. This causes a contradiction.

So u is a constant in Bpz0, Rq.

Then for every z1 in the region, since we can find a series of disk such that the

center of the disk is in the previous disk and z0 is the center of the first disk, z1 is

in the last disk.

Then by the property above, upz0q “ upz1q. So u is a constant, which causes a

contradiction!

Theorem 4.73. u is harmonic in the interior of E and continuous on E, which is

bounded, then the maximum and minimum of u are taken on BE.

Proof. It is followed from Theorem 4.72

It follows that the maximal norm of harmonic function u is taken on BE, which

implies a corollary
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Corollary 4.74. If u1 and u2 are continuous on a closed bounded set E which are har-

monic in the interior of E and u1 “ u2 on the boundary of E, then u1 “ u2 on E.

Proof. Apply the maximum and minimum principle to u1 ´ u2

4.6.3 Poisson’s Formula

Theorem 4.75 (Poisson’s formula). Suppose that u is harmonic on Bp0, Rq and con-

tinuous on Bp0, Rq. Then

upaq “
1

2π

ż

|z|“R

R2 ´ |a|2

|z ´ a|2
upzqdθ (4.67)

for @a P Bp0, Rq.

Proof. The idea is to use Möbius transformation and apply mean-value property.

Let ζ “ S´1pzq “

z
R

´ a
R

1 ´ ā
R

¨ z
R

“
Rpz ´ aq

R2 ´ ā ¨ z
. So z “ Spζq “

RpRζ ` aq

R ` āζ
is a Möbius

transformation mapping the unit circle into Bp0, Rq in which 0 ÞÑ a.

Suppose upSpζqq is harmonic on |ζ| ď 1(See Remark 4.77). The mean-value

property implies

upSp0qq “ upaq “
´i

2π

ż

|ζ|“1

upζq
dζ

ζ
(4.68)

where
dζ

ζ
“

R2 ´ āz

Rpz ´ aq
¨
RpR2 ´ |a|2q

pR2 ´ āzq2
dz

“

„

1

z ´ a
`

ā

R2 ´ āz

ȷ

dz

z“Reiθ
“

„

iz

z ´ a
`

iāz

R2 ´ āz

ȷ

dθ

“
R2“zz̄

“

„

iz

z ´ a
`

iā

z̄ ´ ā

ȷ

dθ

“ i
R2 ´ a2

|z ´ a|2
dθ

(4.69)
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Combined with (4.68) and (4.69), we obtain (4.67) in a stronger assumption.

upaq “
1

2π

ż

|z|“R

R2 ´ |a|2

|z ´ a|2
upzqdθ

Remark 4.76. Note that

R2 ´ |a|2

|z ´ a|2
“

z

z ´ a
`

ā

z̄ ´ ā

“
1

2

„

z

z ´ a
`

ā

z̄ ´ ā
`

z̄

z̄ ´ ā
`

a

z ´ a

ȷ

“
1

2

ˆ

z ` a

z ´ a
`
z̄ ` ā

z̄ ´ ā

˙

“ Re

ˆ

z ` a

z ´ a

˙

(4.70)

So the Poisson’s formula can also be written as

upaq “
1

2π

ż

|z|“R

Re

ˆ

z ` a

z ´ a

˙

upzqdθ, @a P Bp0, Rq (4.71)

or

upaq “ Re

„

1

2πi

ż

|z|“R

z ` a

z ´ a
¨
upzq

z
dz

ȷ

, @a P Bp0, Rq (4.72)

By Lemma 4.19, u is the real part of the analytic function

fpzq “
1

2πi

ż

|ζ|“R

ζ ` z

ζ ´ z
¨
upζq

ζ
dζ ` iC

where C P R. (4.72) is called the Schwarz Formula.

Remark 4.77. For the general assumption in the theorem 4.75, note that if r P
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p0, 1q, then uprzq is harmonic in Bp0, Rq. The above proof implies

upraq “
1

2π

ż

|z|“R

R2 ´ |a|2

|z ´ a|2
uprzqdθ (4.73)

Since u is continuous on a compact set Bp0, Rq, it is uniformly continuous. Then

uprzq Ñ upzq uniformly for |z| “ R as r Ñ 1.

Then take r Ñ 0 in (4.73) and we obtain Poisson’s formula holds under the

assumption of the theorem.

4.6.4 Schwarz’s Theorem

We can easily define harmonic function u in the interior if u is piecewise con-

tinuous on the boundary by (4.72). However, it is not always continuous at the

boundary. The next theorem gives a condition that such an extended function u

exists if u is continuous on the boundary.

Theorem 4.78 (Schwarz’s theorem). Given a piecewise continuous function u on

r0, 2πs, the Poisson integral

Pupzq “
1

2π

ż 2π

0

Re

ˆ

eiθ ` z

eiθ ´ z

˙

upθqdθ (4.74)

is harmonic for |z| ă 1. Moreover, lim
zÑeiθ
|z|ă1

Pupzq “ upθ0q if u is continuous at θ0.

Proof. Lemma 4.19 implies Pu is harmonic in |z| ă 1.

Note that P is a linear functional which maps piecewise continuous function

u on r0, 2πs to harmonic function Pu on the unit disk. Explicitly,

$

’

’

&

’

’

%

Pu1`u2 “ Pu1 ` Pu2

Pλu “ λPu

(4.75)
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Applying Poisson’s formula 4.75 to u ” 1, we get P1 “ 1, and thus Pc “ c, @c P

R.

If u ě 0 on r0, 2πs, then Pu ě 0. (4.75) follows that if ´8 ă m ď upθq ď M ă 8

for @θ P r0, 2πs, then m ď Pu ď M .

By replacing u with u ´ upθ0q, WLOG, we may assume upθ0q “ 0.

If u is continuous at θ0, then @ε ą 0, one can choose C2 Ă BBp0, 1q s.t. eiθ0 P

intpC2q and |upθq| ă ε
2

for @eiθ P C2. Let C1 “ BBp0, 1qzC2. Define

u1pθq “

$

’

’

&

’

’

%

upθq, eiθ P C1

0, otherwise
u2pθq “

$

’

’

&

’

’

%

upθq, eiθ P C2

0, otherwise
(4.76)

Linearity of P implies Pu “ Pu1 ` Pu2 . |u2| ă
ε

2
ñ |Pu1pzq| ă ε

2
, @z P Bp0, 1q. So

lim
zÑeiθ
|z|ă1

Pu2pzq “ 0

Pu1 can be viewed as a line integral over C1 ñ Pu1 is harmonic in CzC1. So Pu1

is harmonic in CzC1 by lemma 4.19.

Re

ˆ

eiθ ` z

eiθ ´ z

˙

“
1 ´ |z|2

|z ´ eiθ|2
ñ Pu1pzq “ 0 for z P C2. Continuity implies

lim
zÑeiθ
|z|ă1

Pu1pzq “ 0.

Therefore, lim
zÑeiθ
|z|ă1

Pupzq “ 0 “ upθ0q

4.6.5 The Reflection Principle

Theorem 4.79 (The reflection principle). Let Ω be a region which is symmetric w.r.t.

the x-axis, and Ω` :“ Ω X tz P C : Imz ą 0u, σ “ Ω X tz P C : Imz “ 0u.

Suppose that v is continuous in Ω` Y σ, harmonic on Ω`, and zero on σ. Them v has a

harmonic extension to Ω, which satisfies vpz̄q “ ´vpzq. In the same situation, if v is the

imaginary part of an analytic function fpzq in Ω`, then fpzq has an analytic extension

which satisfies fpzq “ fpz̄q.
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Ω`

Ω´

σ

Proof. hpzq “

$

’

’

’

’

’

&

’

’

’

’

’

%

vpzq, z P Ω`

0, z P σ

vpz̄q, z P Ω´

.

We need to prove that h is harmonic in Ω. It suffices to prove h is harmonic on

σ. Choose δ small s.t. Bpx, δq Ă Ω. Let Ph be the Poisson integral w.r.t. BBpx0, δq

with the boundary values h.

Schwarz’ theorem 4.78 implies Ph is harmonic in Bpx, δq and continuous on

Bpx0, δq. It follows that,

(1) v ´ Ph is harmonic in the upper half disk Bpx0, δq X tz P C : Imz ą 0u.

(2) v ´ Ph “ 0 on BBpx, δq X tz P C : Imz ě 0u.

@x P Bpx0, δq X σ, apply Poisson formula 4.67

Phpxq “
1

2π

ż 2π

0

δ2 ´ |x|2

|δeiθ ´ x|2
hpδeiθqdθ “ 0 (4.77)

by symmetry.

Apply the maximum and minimum principle 4.74 to h ´ Ph, we get h “ Ph in

Bpx, δq X tz P C : Imz ě 0u.

The same argument works for the lower half disk.

So h “ Ph in Bpx0, δq ñ h is harmonic at x0.
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For the second part of the theorem, it is enough to prove f̃pzq “
$

’

’

&

’

’

%

fpzq, z P Ω`

fpz̄q, z P Ω´

is analytic on σ.

For @x0 P σ, let Bpx0, δq be as before. We already proved v can be extended to

a harmonic function in Bpx0, δq. v has a conjugate function ´u0 iin the same disk.

We may normalize u0 s.t. u0 “ Refpzq in Bpx0, δ X tz P C, Imz ą 0uq. Define

gpzq :“ u0pzq ´ u0pz̄q.

Then gpxq “ 0 for x P Bpx0, δq X σ ñ

Bg

Bx
pzq “ 0, @z P Bpx0, δq X σ

Bg

By
pxq “ 2

Bu0
By

pzq “ ´2
Bv

Bx
pzq “ 0

So the analytic function
Bg

Bx
´ i

Bg

By
” 0 on Bpx, δq X σ.(It is analytic because of

(4.58)) Then
Bg

Bx
´ i

Bg

By
” 0 in Bpx0, δq ñ g ” 0.

So u0pzq “ u0pz̄q, @z P Bpx0, δq ñ fpzq “ u0pzq ` ivpzq is analytic in Bpx0, δq

and fpzq “ fpz̄q for @z P Bpx0, δq.

Remark 4.80. The reflection principle can be applied to any circles with symmet-

ric points by using Möbius transformation. However, the condition of fpRq Ă R (

i.e. vpRq “ 0q transforms to fpCq Ă C.
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5 Series and Product Representations

5.1 Power Series Expansions

5.1.1 Weierstrass’s Theorem

Theorem 5.1 (Weierstrass’s Theorem). Suppose fn is analytic in the region Ωn for each

n P N, and Ω1 Ă Ω2 Ă ¨ ¨ ¨ Ă Ωn Ă ¨ ¨ ¨ and
ď

nPN

Ωn “ Ω. If fn converges to f in Ω,

uniformly on every compact subset of Ω, then f is analytic in Ω.

Moreover, f 1
n converges uniformly to f 1 on every compact subset of Ω.

Proof. @ compact subset K Ă Ω, K Ă

8
ď

n“1

Ωn ñ DN P N such that K Ă

N
ď

n“1

Ωn.

@z0 P Ω, DR ą 0 s.t. Bpz0, Rq Ă Ω. Choose N P N s.t. Bpz0, Rq Ă Ωn for

@n ě N .

Cauchy’s integral formula 4.52 implies

fnpzq “
1

2πi

ż

BBpz0,Rq

fnpζq

ζ ´ z
dζ, @z P Bpz0, Rq (5.1)

fn Ñ f uniformly on Bpz0, Rq ñ

fpzq “
1

2πi

ż

BBpz0,Rq

fpζq

ζ ´ z
dζ (5.2)

Then f is analytic in Bpz0, Rq by lemma 4.19.

$

’

’

’

&

’

’

’

%

f 1
npzq “

1

2πi

ż

BBpz0,Rq

fnpζq

pζ ´ zq2
dζ @z P Bpz0, Rq

f 1pzq “
1

2πi

ż

BBpz0,Rq

fpζq

pζ ´ zq2
dζ @z P Bpz0, Rq

(5.3)

Then |f 1
npzq ´ f 1pzq| ď

1

2π

ż

BBpz0,Rq

|fnpζq ´ fpζq|

|ζ ´ z|2
|dζ|. Therefore, f 1

n uniformly con-

67



verges to f 1 in Bpz0, ρq for 0 ă ρ ă R.

Since any compact subset of Ω can be covered by a finite number of such closed

disks, fn Ñ f uniformly on every compact subset of Ω.

Corollary 5.2. If fn is analytic in a region Ω for n P N, and
n
ÿ

j“1

fj Ñ f on every compact

subset of Ω, then f is analytic in Ω and f 1pzq “

8
ÿ

j“1

f 1
jpzq, @z P Ω uniformly on every

compact subset of Ω.

Theorem 5.3 (Hurwitz’s Theorem). If the functions fn are analytic and nowhere zero

in a region Ω, and if fn Ñ f on every compact subset of Ω, then f is either identically

zero or never equal to 0 in Ω.

Proof. Suppose f ı 0. The zeros of f are isolated.

@z0 P Ω, Dδ ą 0 s.t. fpzq ‰ 0, @z P Bpz0, δqztz0u Ă Ω.

Then |f | has a positive minimum on BBpz0, δq. Thus,
1

fn
Ñ

1

f
on BBpz0, δq.

Combined with f 1
n Ñ f 1 on BBpz0, δq ñ

lim
nÑ8

1

2πi

ż

BBpz0,δq

f 1
npzq

fnpzq
dz “

1

2πi

ż

BBpz0,δq

f 1pzq

fpzq
dz (5.4)

By argument principle 4.38, this equation equals to 0. So f has no zeros on

BBpz0, δq, so is on Ω.

5.1.2 The Taylor Series

Theorem 5.4. If f is analytic in the region Ω, and z0 P Ω, then the expression

fpzq “

8
ÿ

n“0

f pnqpz0q

n!
pz ´ z0q

n (5.5)

is valid in the largest open disk of z0 contained in Ω.
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Proof. Taylor’s theorem 4.26 implies

fpzq “ fpz0q ` f 1pz0qpz ´ z0q ` ¨ ¨ ¨ `
f pnqpz0q

n!
pz ´ z0qn ` fn`1pzqpz ´ z0q

n`1, (5.6)

for @z P Bpz0, Rq Ă Bpz0, Rq Ă Ω, where

fn`1pzq “
1

2πi

ż

BBpz0,Rq

fpζq

pζ ´ zqn`1pζ ´ zq
dζ (5.7)

LetM :“ max
zPBBpz0,Rq

|fpzq|. Then |fn`1pzqpz´z0q
n`1| ă

M

RnpR ´ |z ´ z0|q
¨|z´z0|n`1 Ñ

0 in every disk |z ´ z0| ď ρ ă R, from which we derive this theorem.

Some known Taylor series:

ez “ 1 ` z `
z2

2!
` ¨ ¨ ¨ `

zn

n!
` ¨ ¨ ¨ , z P C

cos z “ 1 ´
z2

2!
`
z4

4!
´ ¨ ¨ ¨ `

p´1qnz2n

p2nq!
` ¨ ¨ ¨ , z P C

sin z “ z ´
z3

3!
`
z5

5!
´ ¨ ¨ ¨ `

p´1qnz2n`1

p2n ` 1q!
` ¨ ¨ ¨ , z P C

lnp1 ` zq “ z ´
z2

2
`
z3

3
´ ¨ ¨ ¨ ` p´1qn`1 z

n

n
` ¨ ¨ ¨ , @|z| ă 1

@µ P RzZě0, p1 ` zqµ “ 1 ` µz `

ˆ

µ

2

˙

z2 ` ¨ ¨ ¨ `

ˆ

µ

n

˙

zn ` ¨ ¨ ¨ , @|z| ă 1

(5.8)

where
ˆ

µ

n

˙

“
µpµ ´ 1q ¨ ¨ ¨ pµ ´ n ` 1q

n!
, and pick the branch with ln 1 “ 0.

5.1.3 Laurent Series

Lemma 5.5. Let A :“ tz P C : R1 ă |z ´ a| ă R2u be an annulus. For each analytic

function f : A Ñ C, there are analytic functions f1 : tz P C : |z ´ a| ă R2u Ñ C,

f2 : tz P C : |z ´ a| ą R1u Ñ C s.t. fpzq “ f1pzq ` f2pzq, @z P A

Proof. For @z P A, f1pzq “
1

2πi

ż

|ζ´a|“r1

fpζq

ζ ´ z
dζ , r1 P p|z ´ a|, R2q.
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Cauchy’s theorem 4.52 implies the integral is independent of the choice of r1.

If we fix such r, then f1pzq is analytic for @|z ´ a| ă r1.
r1ÑR2

ñ f1pzq is well-

defined and analytic on Bpa,R2q.

Let

f2pzq “ ´
1

2πi

ż

|ζ´a|“r2

fpζq

ζ ´ z
dζ, r2 P pR1, |z ´ a|q (5.9)

Then f2 is well-defined and analytic in tz P C : |z ´ a| ą R1u.

Denote γ1 “ tz : |z´a| “ r1u, γ2 “ tz : |z´a| “ r2u,R1 ă r2 ă |z´a| ă r1 ă R1.

Cauchy’s integral formula 4.39 implies

fpzq “ npγ1 ´ γ2, zqfpzq “
1

2πi

ż

γ1´γ2

fpζq

ζ ´ z
dζ “ f1pzq ` f2pzq, @z P A (5.10)

Theorem 5.6 (Laurent Theorem). Any analytic function f on A “ tz P C : R1 ă

|z ´ a| ă R2u has a power series of the form

fpzq “

8
ÿ

n“´8

cnpz ´ aqn (5.11)

This series, called Laurent series, converges uniformly on each compact subset of A.

Moreover,

cn “
1

2πi

ż

|ζ´a|“r

fpζq

pζ ´ aqn`1
dζ, @n P Z, @r P pR1, R2q (5.12)

Proof. The previous lemma implies fpzq “ f1pzq ` f2pzq, @z P A, where f1 is an-

alytic in |z ´ a| ă R2 and f2 is analytic in |z ´ a| ą R1. Then Taylor series for f1

is

f1pzq “

8
ÿ

n“0

anpz ´ aqn (5.13)

which converges uniformly on each compact subset of |z ´ a| ă R2.
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Let gpzq “ f2pa`
1

z
q, |z| ă

1

R1

. (5.9) tells us lim
zÑ8

f2pzq “ 0. Then lim
zÑ0

gpzq “ 0 ñ

g can be viewed as an analytic function in Bp0,
1

R1

q.

The Taylor’s series for g is gpzq “

8
ÿ

n“1

bnz
n, which converges uniformly on each

compact subset of Bp0,
1

R1

q. Now let ζ “ a ` 1
z
. Then

f2pζq “ gpzq “ gp
1

ζ ´ a
q “

8
ÿ

n“1

bnpζ ´ aqn (5.14)

which converges uniformly on each compact subset |z ´ a| ą R1.

fpzq “

8
ÿ

n“´8

cnpz ´ aqn (5.15)

which converges uniformly on each compact subset of A. Then

1

2πi

ż

|z´a|“r

fpzq

pz ´ aqn`1
dz “

1

2πi

8
ÿ

k“´8

ck
ÿ

|z´a|“r

pz ´ aqk´pm`1qdz, @z P pR1, R2q

(5.16)

where
ż

|z´a|“r

pz ´ aqk´pn`1qdz ‰ 0 iff k “ n. So

cn “
1

2πi

ż

|ζ´a|“r

fpζq

pζ ´ aqn`1
dζ, @n P Z, @r P pR1, R2q (5.17)

Theorem 5.7. Let f be analytic in Ωztau, where Ω is a region and a is an isolated singu-

larity. Its Laurent series is given by fpzq “

8
ÿ

n“´8

cnpz´aqn, @z P Bpa,Rqztau Ă Ωztau.

Then

(a) f has a removable singularity at a iff cn “ 0 for n ă 0

(b) f has a pole of order N at a iff cn “ 0 for n ă ´N and c´N ‰ 0.
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(c) f has an essential singularity at a iff cn ‰ 0 for infinitely many negative n.

Proof. (a) and (b) can be derived from the explicit expression of f1, f2.

For (c), "ñ" follows from (b) and (a).

"ð" follows from the fact that isolated singularities belong to one of three cat-

egories: removable singularities, poles, and essential singularities, i.e. theorem

4.33.

5.2 Partial Fractions and Factorization

5.2.1 Partial fractions

Theorem 5.8 (Mittag-Leffler Theorem). Let tζk : k P Nu be a sequence in C, lim
kÑ8

ζk “

8, and let Pk be polynomials without constant term. Then there are functions which

are meromorphic in C with poles at just the points ζk and the corresponding singular

part Pk

ˆ

1

z ´ ζk

˙

. Moreover, the most general meromorphic function of this kind can be

written as

fpzq “
ÿ

k

„

Pk

ˆ

1

z ´ ζk

˙

´ pkpzq

ȷ

` gpzq (5.18)

where pk are polynomials and g is entire.

Proof. WLOG, we assume ζk ‰ 0 for each k. Consider the Taylor expansion for

Pkp
1

z ´ ζk
q around z “ 0:

Ψpzq “ Pkp
1

z ´ ζk
q “ Ψp0q ` Ψ1p0qz `

Ψ2p0q

2!
z2 ` ¨ ¨ ¨ `

ΨpNkqp0q

Nk!
zNk ` ΨNk`1z

Nk`1

(5.19)

where Nk is to be specified later, and

ΨNk`1pzq “
1

2πi

ż

C

Ψpζq

ζNk`1pζ ´ zq
dζ (5.20)
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where C is the circle centered at 0 with radius
|ζk|

2
. Let Mk : max

zPC
|Ψpzq|. Then

|ΨNk`1pzq| ď
1

2π

Mk
ˆ

|ζk|

2

˙Nk`1

¨
|ζk|

4

¨ 2π ¨
|ζk|

4
“ 2Mk

ˆ

2

|ζk|

˙Nk`1

, @z with |z| ď
|ζk|

4

(5.21)

Let pk be the partial sum of Ψ up to zNk . i.e. pk “ Ψp0q ` Ψ1p0qz `
Ψ2p0q

2!
z2 `

¨ ¨ ¨ `
ΨpNkqp0q

Nk!
zNk . Then

|Ψpzq ´ pkpzq| ď 2Mk

ˆ

2|z|

|ζk|

˙Nk`1

, @z with |z| ď
|ζk|

4
(5.22)

Pick Nk large enough s.t. Mk ¨ 2k ď 2Nk . Then

|Ψpzq ´ pkpzq| ď 2´k ñ |Pkp
1

z ´ ζk
q ´ pkpzq| ď 2´k, @z with |z| ď

|ζk|

4
(5.23)

Note that

ÿ

k

„

Pkp
1

z ´ ζk
q ´ pkpzq

ȷ

“
ÿ

|
ζk
4

|ďR

„

Pkp
1

z ´ ζk
q ´ pkpzq

ȷ

`
ÿ

|
ζk
4

|ąR

„

Pkp
1

z ´ ζk
q ´ pkpzq

ȷ

where the first part is a finite sum and has Pkp
1

z ´ ζk
q as the singular part at the

pole ζk, and the second part is analytic in z P Bp0, Rq by Weierstrass’s theorem

4.36 and (5.23)

Therefore, hpzq “
ÿ

k

„

Pkp
1

z ´ ζk
q ´ pkpzq

ȷ

is the desired meromorphic func-

tion.

For the second part, if f is meromorphic in C with the some poles ζk and

singular parts as h, then g “ f ´ h is analytic in C.

Remark 5.9. We have given pk as the partial sum of Pkp
1

z ´ ζk
q up to some Nk
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Example 5.10. Prove that

π2

sin2pπzq
“

8
ÿ

n“´8

1

pz ´ nq2
(5.24)

Proof. The singular part of
π2

sin2pπzq
at the pole z “ 0 is

1

z2
ñ The singular part of

π2

sin2pπzq
at z “ n P Z is

1

pz ´ nq2
. We know

8
ÿ

n“´8

1

pz ´ nq2
converges uniformly on

each compact set in C if we omit the terms which become infinite ( i.e. pk “ 0 in

the previous theorem)

The Mittag-Leffler Theorem 5.8 implies
π2

sin2pπzq
“

8
ÿ

n“´8

1

pz ´ nq2
` gpzq where

g is analytic in C.

It is easy to see that g has period 1 and lim
|y|Ñ8

gpx ` iyq “ 0 uniformly in x P R.

Then |gpzq| is bounded in tz P C : 0 ď Rez ď 1u ñ |gpzq| is bounded in C by its

periodicity.

Then Liouville’s theorem 4.22 implies g is a constant, hence of 0 since lim
yÑ8

gpx`

iyq “ 0.

Similarly, one can prove

π cotpπzq “
1

z
`

ÿ

n‰0

1

z ´ n
`

1

n
“

1

z
`

8
ÿ

n“1

2z

z2 ´ n2
, z P C (5.25)

From (5.24) and (5.25), one can derive

π

sinpπzq
“ lim

mÑ8

m
ÿ

n“´m

p´1qn

z ´ n
, z P C (5.26)
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5.2.2 Infinite Products

An infinite product of complex numbers
8
ź

n“1

an converges if and only if at most

a finite number of the factors are zero, and if the partial products formed by the

non-vanishing factors tend to a finite limit which is different from zero.

Remark 5.11.
8
ź

n“1

an converges ñ an “

n
ź

j“1

aj

n´1
ź

j“1

aj

Ñ 1 as n Ñ 8 (if the zero factors

are omitted)

Theorem 5.12. The infinite product
8
ź

n“1

p1 ` anq with 1 ` an ‰ 0 converges if and only

if
8
ÿ

n“1

Lnp1 ` anq converges, where Ln is the principal branch of the logarithm.

Proof. "ð": Let Sn “

n
ÿ

k“1

Lnp1 ` akq. Then Pn “

n
ź

k“1

p1 ` akq “ eSn .

So sn Ñ s as n Ñ 8 ñ Pn Ñ P “ es ‰ 0 as n Ñ 8

"ñ" Suppose Pn Ñ P ‰ 0 as n Ñ 8.

There exists Mn P Z s.t. Lnp
Pn
P

q “ Sn ´ LnP ` 2πi ¨ Mn, n P N.

Then 2πpMn`1 ´Mnq “ argp
Pn`1

P
q ´ argp

Pn
P

q ´ argp1` an`1q. From lim
kÑ8

Pn
P

“ 1

we can derive argp
Pn`1

P
q ´ argp

Pn
P

q Ñ 0 as n Ñ 8.

| argp1 ` an`1q| ď π ñ Mn`1 ´ Mn “ 0 for n large enough. So Mn “ M P Z for

all large n.

Then Lnp
Pn
P

q “ Sn ´LnP `2πi ¨M , n P N ñ Sn Ñ LnP ´2πi ¨M as n Ñ 8

The infinite product
8
ź

n“1

p1 ` anq is said to be absolutely convergent if the infi-

nite sum
8
ÿ

n“1

Lnp1 ` anq is absolutely convergent.

Theorem 5.13. The product
8
ź

n“1

p1 ` anq is absolutely convergent iff
8
ÿ

n“1

|an| converges.
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Proof. Convergence of either
8
ÿ

n“1

Lnp1 ` anq or
8
ÿ

n“1

|an| implies an Ñ 0 as n Ñ 8

lim
zÑ0

Lnp1 ` zq

z
“ 0 ñ

1

2
|an| ă |Lnp1 ` anq| ă

3

2
|an| for all large n.

5.2.3 Canonical Products

If g is an entire function, then fpzq “ egpzq is entire and everywhere nonzero.

Conversely, if f is any entire function which is never zero, then gpzq “ ln fpzq is

well-defined. So fpzq “ egpzq where g is entire.

This result gives a way to construct the most general function with a finite

number of zeros. Assume f has a zero of order m at the origin, and N zeros

a1, ¨ ¨ ¨ , aN away from the origin.(multiple zeros being repeated) Then

fpzq “ zmegpzq

N
ź

n“1

p1 ´
z

an
q (5.27)

where g is entire.

If there are infinitely many zeros, an obvious generalization is

fpzq “ zmegpzq

8
ź

n“1

p1 ´
z

an
q (5.28)

Theorem 5.13 implies
8
ź

n“1

p1´
z

an
q converges absolutely iff

8
ÿ

n“1

1

|an|
converges. And

in this case, the convergence is also uniform in tz : |z| ď Ru for @R ą 0.

Theorem 5.14 (Weierstrass factorization theorem). There exists an entire function

with arbitrary prescribed zeros panqnPN as long as an Ñ 8 if the number of zeros is

infinite. Moreover, every entire function with these and no other zeros can be written as

fpzq “ zmegpzq

8
ź

n“1

p1 ´
z

an
q exp

„

z

an
`

1

2
p
z

an
q2 ` ¨ ¨ ¨ `

1

Nn

p
z

an
qNn

ȷ

(5.29)
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where the product is taken over all a0 ‰ 0, Nn P N Y t0u, and g is entire.

Proof. We already proved the case when the number of zeros is finite in (5.27). So

we consider a sequence of complex numbers an ‰ 0 with lim
nÑ8

an “ 8. We need

to prove that D polynomials pnpzq s.t.
8
ź

n“1

p1 ´
z

an
epnpzqq converges to an entire

function. By theorem 5.12, this is equivalent to the uniform convergence of

8
ÿ

n“1

rlnp1 ´
z

an
q ` pnpzqs (5.30)

where the branch of the logarithm shall be chosen s.t. rnpzq “ lnp1 ´
z

an
q ` pnpzq

has imaginary part in p´π, πs.

For given R ą 0, we only need to consider the terms with |an| ą R.

The Taylor series gives

Lnp1 ´
z

an
q “ ´

„

z

an
`

1

2
p
z

an
q2 ` ¨ ¨ ¨

ȷ

, |z| ď R (5.31)

We define pnpzq “
z

an
`

1

2

ˆ

z

an

˙2

` ¨ ¨ ¨ `
1

Nn

ˆ

z

an

˙Nn

, where Nn P N Y t0u is to be

specified later.

Then

rn pzq “ ´

«

1

Nn ` 1

ˆ

z

an

˙Nn`1

`
1

Nn ` 2

ˆ

z

an

˙Nn`2

` ¨ ¨ ¨

ff

` 2knπ, |z| ď R, kn P Z

And thus

|rn pzq | ď
1

Nn ` 1

ˆ

z

|an|

˙Nn`1

¨

«

1 `
R

|an|
`

ˆ

R

|an|

˙2

` ¨ ¨ ¨

ff

“
1

Nn ` 1

ˆ

R

|an|

˙Nn`1ˆ

1 ´
R

|an|

˙´1

, |z| ď R
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If we choose Nn “ n, then rnpzq Ñ 0 as n Ñ 8. Then Imprnpzqq P p´π, πs for

all large n. So kn “ 0 for enough large n. Moreover,
ř

rnpzq is absolutely and

uniformly convergent for |z| ď R.

So
8
ź

n“1

p1 ´
z

an
qepnpzq is analytic in Bp0, Rq for @R ą 0.

Corollary 5.15. Every function which is meromorphic in C is the quotient of two entire

functions.

Proof. If F is meromorphic in C, the theorem 5.14 implies that we can construct

an entire function g whose zeros are the poles of F . Then fpzq “ F pzqgpzq. So

F pzq “
fpzq

gpzq

The proof of the Weierstrass factorization theorem 5.14 tells us

8
ź

n“1

p1 ´
z

an
q exp

«

z

an
`

1

2

ˆ

z

an

˙2

` ¨ ¨ ¨ `
1

h

ˆ

z

an

˙h
ff

(5.32)

converges and represents an entire function is

1

n ` 1

8
ÿ

n“1

ˆ

R

|an|

˙h`1

(5.33)

converges for all R ą 0 ô

8
ÿ

n“1

1

|an|h`1
converges.

Suppose h is the smallest integer for which
8
ÿ

n“1

1

|an|h`1
converges. For this h,

(5.32) is called the canonical product associated with the sequence tanu, and h is

the genus of the canonical product.

If f has a Weierstrass factorization for which the infinite product is a canonical

product, and if in this representation g reduces to a polynomial, then f is said to

be of finite genus. The genus of f is then defined to be

maxtdegree of g , genus of the canonical productu

78



Example 5.16. An entire function of genus zero is of the form

fpzq “ Czm
8
ź

n“1

p1 ´
z

an
q (5.34)

with C P Czt0u, and
8
ÿ

n“1

1

|an|
ă 8.

Example 5.17. The canonical representation of an entire function of genus one is

either of form

fpzq “ Czmeαz
8
ź

n“1

p1 ´
z

an
q exp

„

z

an

ȷ

(5.35)

with C P Czt0u,
ÿ 1

|an|
“ 8,

8
ÿ

n“1

1

|an|2
ă 8,

or of the form

fpzq “ Czmeαz
8
ź

n“1

p1 ´
z

an
q (5.36)

with C P Czt0u, α ‰ 0,
ÿ 1

|an|
ă 8.

Example 5.18. Prove that sinpπzq “ πz
8
ź

n“1

p1 ´
z2

n2
q, @z P CzZ.

Proof. The zeros of sinpπzq are z “ n, n P Z. The genus of the canonical product

associated with tnunPZ`
is one.

So by Weierstrass factorization theorem 5.14, we must take h “ 1, and

sinpπzq “ zegpzq
ź

n‰0

p1 ´
z

n
qe

z
n (5.37)

Taking logarithmic derivatives on both sides, we get

π cotpπzq “
1

z
` g1pzq `

ÿ

n‰0

ˆ

1

z ´ n
`

1

n

˙

(5.38)
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uniformly converges on compact sets in CzZ.

Comparing with the expression for π cotpπzq in (5.25), we obtain g1pzq ” 0 and

since lim
zÑ0

sinpπzq

z
“ π, we have

sin πz “ πz
ź

n‰0

p1 ´
z

n
qe

z
n “ πz

8
ź

n“1

p1 ´
z2

n2
q

Here we use the absolute convergence and uniform convergence of the product.

5.2.4 The Gamma Function

Γpzq “

ż 8

0

tz´1e´tdt, Rez ą 0 (5.39)

Let fnpzq “

ż n

0

tz´1e´tdt. Then fnpzq is analytic in Rez ą 0 and

|fnpzq ´ Γpzq| “ |

ż 8

n

tz´1e´tdt| ď

ż 8

n

tRez´1e´tdt (5.40)

which converges uniformly in tz P C : δ ď Rez ď Mu for @δ ą 0,M ą 0. By

Weierstrass’ theorem 5.1, Γ is analytic in tz : Rez ą 0u.

Proposition 5.19. Here are some properties of the Gamma function:

(a) Γpz ` 1q “ zΓpzq, @z P Czt0,´1, ¨ ¨ ¨ , u. In particular, Γpn ` 1q “ n!, @n P N.

(b) Γ extends to a meromorphic function on C with simple poles at z “ 0,´1,´2, ¨ ¨ ¨ ,

(c)
1

Γpzq
“ zeγz

8
ź

n“1

p1 `
z

n
qe´ z

n , z P C, where γ “ lim
nÑ8

n
ÿ

k“1

1

k
´ lnn is the Euler’s

constant

(d) Γpzq “ lim
nÑ8

n!nz

zpz ` 1q ¨ ¨ ¨ pz ` nq
, @z P Czt0,´1,´2, ¨ ¨ ¨ u.
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(e) Γ has no zeros,
1

Γ
is entire.

(f) ΓpzqΓp1 ´ zq “
π

sinpπzq
, @z P CzZ

Proof.

(a) Integration by parts ñ Γpz ` 1q “ zΓpzq, Rez ą 0.

(b) We use Γpz` 1q “ zΓpzq to analytically continue Γ to meromorphic function

on C. Then

Γ1pzq “
Γpz ` 1q

z
(5.41)

is analytic on tz P C : Rez ą ´1uzt0u s.t. Γ1pzq “ Γpzq for Rez ą 0.

z “ 0 is a simple pole of Γ1 with Reszą0Γ1pzq “ Γp1q “ 1.

By induction, if we have Γn´1 as the analytic continuous of Γ to Rez ą 1´n,

z ‰ ´n ` 2,´n ` 3, ¨ ¨ ¨ , 0, then we define

Γnpzq “
Γn´1pz ` 1q

z
“

Γpz ` nq

zpz ` 1q ¨ ¨ ¨ pz ` n ´ 1q
(5.42)

which is meromorphic for Rez ą ´n.with poles z “ ´n ` 1, ,´n ` 2 ¨ ¨ ¨ , 0

and Resz“´n`1ReΓnpzq “
p´1qn´1

pn ` 1q!
.

(c,d,e) We know that lim
nÑ8

p1 ´
t

n
qntz´1 “ e´ttz´1, and p1 ´

t

n
qn ď e´t for 1 ď t ď n.

Then dominated convergence theorem implies

lim
nÑ8

ż n

0

p1 ´
t

n
qntz´1dt “

ż 8

0

e´ttz´1dt “ Γpzq, @Rez ą 0

Claim.
ż n

0

p1 ´
t

n
qntz´1dt “

n!nz

zpz ` 1q ¨ ¨ ¨ pz ` nq
, Rez ą 0 (5.43)
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Proof. Indeed, for n “ 1,
ż 1

0

p1 ´ tqtz´1dt “
1

z
´

1

z ` 1
.

Suppose (5.43) holds for n ´ 1. Then

ż n

0

p1 ´
t

n
qntz´1dt

s“ t
n

“ nz
ż 1

0

p1 ´ sqnsz´1ds

“
nz

z

„

p1 ´ sqnsz|10 ` n

ż 1

0

p1 ´ sqn´1szdz

ȷ

“
nz`1

z

ż 1

0

p1 ´ sqn´1szds

“
nz`1

z
¨ ¨ ¨

pn ` 1q!

zpz ` 1q ¨ ¨ ¨ pz ` n ´ 1q
by induction hypothesis

“
n!nz

zpz ` 1 ¨ ¨ ¨ pz ` nqq
(5.44)

Therefore, Γpzq “ lim
nÑ8

n!nz

zpz ` 1q ¨ ¨ ¨ pz ` nq
, Rez ą 0.

For Rez ą 0,

1

Γpzq
“ lim

nÑ8

zpz ` 1q ¨ ¨ ¨ pz ` nq

n!nz

“ z lim
nÑ8

e´z lnnp1 ` zqp1 `
z

2
q ¨ ¨ ¨ p1 `

z

n
q

“ z lim
nÑ8

exp

«

z

˜

n
ÿ

k“1

1

k
´ lnn

¸ff

n
ź

k“1

p1 `
z

k
qe´ z

k

“ zeγz
n
ź

k“1

p1 `
z

k
qe´ z

k (5.45)

Weierstrass factorization theorems implies that (5.45) represents an entire

function with zeros at 0,´1,´2, ¨ ¨ ¨ .

Then the extension of Γpzq and
1

Γpzq
should have those above properties (c),

(d) and (e).

(f) For @z P CzZ, we have
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1

ΓpzqΓp1 ´ zq
“ ´

1

zΓpzqΓp1 ´ zq

“ ´
1

z
¨ zeγz

8
ź

k“1

p1 `
z

k
qe´ z

k ¨ p´zqe´γz
8
ź

k“1

p1 ´
z

k
qe

z
k

“ z
8
ź

k“1

p1 ´
z2

k2
q

(5.18)
“

sin πz

π

(5.46)

One may use (d) to prove

?
πΓp2zq “ 22z´1ΓpzqΓpz `

1

2
q, z ‰ 0,´1,´2, ¨ ¨ ¨ , z ‰ ´

1

2
,´

3

2
, ¨ ¨ ¨ (5.47)

which is known as Legendre’s duplication formula.

5.3 Entire Functions

5.3.1 Jensen’s formula

Theorem 5.20 (Jensen’s formula). Suppose f is analytic in |z| ď ρ, and all of its zeros

in |z| ă ρ are a1, ¨ ¨ ¨ , an (multiple zeros being repeated) Assume z “ 0 is not a zero.

Then

ln |fp0q| “ ´

n
ÿ

j“1

ln

ˆ

ρ

|aj|

˙

`
1

2π

ż 2π

0

ln |fpρeiθq|dθ (5.48)

Remark 5.21. (1) Jensen’s formula relates the modulus |fpzq| on a circle to the

modulus of the zero in the interior enclosed by the circle.
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(2) If fp0q “ 0, then fpzq “ Czk ` ¨ ¨ ¨ . We apply (5.48) to fpzq

´ρ

z

¯k

and get

ln |c| ` k ln ρ “ ´

n
ÿ

j“1

ln

ˆ

ρ

|aj|

˙

`
1

2π

ż 2π

0

ln |fpρeiθq|dθ (5.49)

Proof. We first assume that f is free of zeros in |z| ď ρ. Then ln |fpzq| is harmonic

in |z| ď ρ. Mean value property 4.70 implies ln |fp0q| “
1

2π

ż 2π

0

ln |fpρeiθq|dθ. It

remains valid if f has zeros on the circle |z| “ ρ. We divide f with one factor

z ´ ρeiθ0 for zeros ρeiθ0 . It suffices to prove that

ln ρ “
1

2π

ż 2π

0

ln |ρeiθ ´ ρeiθ0 |dθ

ô

ż 2π

0

ln |eiθ ´ eiθ0 |dθ “ 0 ô

ż 2π

0

ln |eiθ ´ 1|dθ “ 0 ô

ż π

0

ln sin tdt “ ´π ln 2

Finally, for any f satisfying the assumption of the theorem, we know

F pzq “ fpzq ¨

n
ź

j“1

ρ2 ´ ājz

ρpz ´ ajq
(5.50)

is free from zeros in the disk |z| ă ρ, and |F pzq| “ |fpzq| on |z| “ ρ ñ

ln |F p0q| “
1

2π

ż 2π

0

ln |fpρeiθq|dθ

ñ ln |fp0q| “ ´

n
ÿ

j“1

ln

ˆ

ρ

|aj|

˙

`
1

2π

ż 2π

0

ln |fpρeiθq|dθ

Remark 5.22. Apply the Poisson formula 4.75 to ln |F pzq|, we get the Poisson-
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Jensen formula

ln |fpzq| “ ´

n
ÿ

j“1

ln

ˇ

ˇ

ˇ

ˇ

ρ2 ´ ajz

ρpz ´ ajq

ˇ

ˇ

ˇ

ˇ

`
1

2π

ż 2π

0

Re
ρeiθ ` z

ρeiθ ´ z
ln |fpρeiθq|dθ, @z with |z| ă ρ, fpzq ‰ 0

(5.51)

5.3.2 Order of an entire function

The order of the entire function f is defined by

λ :“ lim sup
rÑ8

ln lnMprq

ln r
where Mprq :“ max

|z|“r
|fpzq| (5.52)

In other words, λ is the smallest number s.t.

Mprq ď exprrλ`εs (5.53)

for @ε ą 0 as soon as r large enough.

Theorem 5.23 (Hadamard Theorem). The genus h and the order λ of an entire function

satisfy the double inequality h ď λ ď h ` 1.

The proof is omitted now.

5.4 The Riemann Zeta Function

We proved in homework that the Riemann zeta function

ζpsq “

8
ÿ

n“1

1

ns
, s “ σ ` it (5.54)

is analytic in the half-plane Res ą 1.

Theorem 5.24. ζ has the following properties:
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(a) (Euler product formula) ζ has the infinite product representation

ζpsq “
ź

p prime

1

1 ´ p´s
, Res ą 1

(b) ζ extends to a meromorphic function on C whose only poly is a simple pole at s “ 1

with residue 1.

(c) ζ has no zeros in Res ě 1, all zeros of ζ in Res ď 0 are at s “ ´2k, k P N.

(d) ζp2nq “
p´1qn´1p2πq2n

2 ¨ p2nq!
B2n, n P N where Bn are the Bernoulli numbers, defined

by
z

ez ´ 1
“

8
ÿ

m“0

Bm

m!
zm, |z| ă 2π

and ζp´nq “ ´
Bn`1

n ` 1
, n P N.

(e) ζ satisfies the functional equation ζ˚p1 ´ sq “ ζ˚psq where ζ˚ is the symmetrized

zeta function defined by

ζ˚psq “ π´ s
2Γp

s

2
qζpsq (5.55)

(f) ζ˚psq “ ´
1

1 ´ s
´

1

s
`

1

2

ż 8

1

pt´
s`1
2 ` t

s´2
2 qpθptq ´ 1qdt, s P Czt0, 1u, where θ is

one of the Jacobi theta series, defined as

θptq “

8
ÿ

n“´8

e´πn2t (5.56)

(g) ζpsq “
Γp1 ´ sq

2πi

ż

C

p´zqs

ez ´ 1
¨
dz

z
where C is the contour shown in the picture, with

ε ă 2π, p´zqs “ exprs lnp´zqs, lnp´zq is chosen s.t. ´π ă Im lnp´zq ă π.
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ε

Proof.
ź

p prime

1

1 ´ p´s
“

1
ź

p primes

p1 ´ p´sq
, Res ą 1 converges absolutely since

ÿ

p prime

|p´s| “
ÿ

p prime

p´Res converges for Res ą 1. Hence, F psq “
ź

p prime

1

1 ´ p´s
is

analytic and nonzero in Res ą 1. It remains to prove that ζpsq “ F psq for Res ą 1.

ζNpsq :“
ź

pďN,p prime

1

1 ´ ps

“
ź

pďN,p prime

8
ÿ

k“0

p´ks

“
ÿ

n“p
k1
1 p

k2
2 ¨¨¨pkmm

pjďN,pj prime

1

ns
, Res ą 1

By the fundamental theorem of arithmetic,

|ζpsq ´ ζNpsq| ď
ÿ

něN

1

|ns|
Ñ 0 as N Ñ 8

which proves (a), and part of (c): ζ has no zeros in Res ą 1.

Define θptq “

8
ÿ

n“´8

e´πn2t. We next prove that θptq “
1

?
t
θp
1

t
q, @t ą 0.

fpxq “ expp´π ` x2q whose Fourier transform is

f̂pkq “

ż 8

´8

fpxq expr´2πikxsdx “
1

?
t
expr´

πk2

t
s
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The Poisson summation formula implies

θptq “

8
ÿ

n“´8

e´πn2t “

8
ÿ

n“´8

1
?
t
expr´

πk2

t
s “

1
?
t
θp
1

t
q (5.57)

Note that θptq ´ 1 “ 2
8
ÿ

n“1

e´πn2t ď 2
8
ÿ

n“1

e´πnt “ 2
e´πt

1 ´ e´πt
, @t ą 0.

i.e. θptq “ 1 ` Ope´πtq as t Ñ 8.

(5.57) implies θptq “
1

?
t
r1 ` Ope´π{tqs as t Ñ 0` ñ θptq “ Op

1
?
t
q as t Ñ 0`.

Γp
s

2
q “

ż 8

0

e´tt
s
2

´1dt, Res ą 1 (5.58)

Then replace t with πn2t. We obtain that

π´ s
2Γp

s

2
qn´s “

ż 8

0

e´πn2tt
s
2

´1dt, Res ą 1 (5.59)

Summing over n ñ

ζ˚psq “

8
ÿ

n“1

ż 8

0

e´πn2tt
s
2

´1t
s
2

´1dt

Fubini
ùùùùù

ż 8

0

˜

8
ÿ

n“0

e´πn2t

¸

t
s
2

´1dt

“

ż 8

0

θptq ´ 1

2
t
s
2

´1dt, Res ą 1

(5.60)

Define gptq “
θptq ´ 1

2
. Then gptq “

1?
t
θp1

t
q ´ 1

2
“

1
?
t
gp
1

t
q `

1

2
?
t

´
1

2
. Therefore,

ζ˚psq “

ż 1

0

gptqt
s
2

´1dt `

ż 8

1

gptqt
s
2

´1dt

“

ż 1

0

r
1

?
t
gp
1

t
q `

1

2
?
t

´
1

2
st

s
2

´1dt `

ż 8

1

gptqt
s
2

´1dt

“ ´
1

s
´

1

1 ´ s
`

1

2

ż 8

1

rθptq ´ 1s ¨ rt
´s´1

2 ` t
s
2

´1sdt, Res ą 1

(5.61)
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which is analytic if we apply Weierstrass theorem to the final integral. So ζ can be

extended to a meromorphic function on C, whose poles are 0, 1.

(5.55) implies ζ˚psq “ ζ˚p1 ´ sq.

This combined with Legendre’s duplication formula and
1

Γp1 ´ s
2
qΓp s

2
q

“

sinpπ s
2
q

π
, we obtain that

ζpsq “ 2sπs´1 sinp
πs

2
qΓp1 ´ sqζp1 ´ sq, s P Γzt0, 1u (5.62)

ζ˚ has simple poles at s “ 0 and s “ 1, with residues ´1 and 1 respectively.

ζpsq “
π

s
2 ζ˚psq

Γp s
2
q

ñ ζ has a simple pole at s “ 1 with residue
π

1
2

Γp1
2
q

“ 1. s “ 0 is

a removable singularity since Γpsq “
1

s
as s Ñ 0. And ζp0q “

1 ¨ ´1
s

1
s
2

“ ´
1

2
.

(5.62) implies zeros of ζ for Res ă 0 are precisely s “ ´2k, k P N.

We have proved (b),(c),(e),(f).

We next prove (g).

ż 8

0

ts´1

et ´ 1
dt “

ż 8

0

ts´1
8
ÿ

n“1

e´ntdt

Fubini
ùùùùù

8
ÿ

n“0

ż 8

0

ts´1e´ntdt

u“nt
“

8
ÿ

n“1

1

ns

ż 8

0

us´1e´udu

“ Γpsqζpsq, Res ą 1

For
ż

C

p´zqs

ez ´ 1
¨
dz

z
, Res ą 1, as ε Ó 0, the contribution from the circle of radius ε

Ñ 0. Then

ż

C

p´zqs

ez ´ 1
¨
dz

z
“

ż 0

´8

exprspln t ´ iπqs

et ´ 1
¨
ddt

t
`

ż 8

0

exprspln t ` iπqs

et ´ 1
¨
dt

t
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“ peisπ ´ e´isπq

ż 8

0

ts´1

et ´ 1
ds

“ 2i sinpsπqΓpsqζpsq, Res ą 1

ñ ζpsq “
1

2i sinpsπqΓpsq

ż

C

p´zqs

ez ´ 1
¨
dz

z

“
Γpz ´ sq

2πi

ż

C

p´zqs

ez ´ 1
¨
dz

z
, Res ą 1

(5.63)

For (d), for @n P N,

ζp´nq
(5.63)
“

Γp1 ` nq

2πi

ż

C

p´zq´n

ez ´ 1
dz

“
n!

2πi

ż

C

p´zq´n

z2

8
ÿ

m“0

Bm

m!
zmdz

“ n!p´1qn
Bn`1

pn ` 1q!

“
p´1qnBn`1

n ` 1

“
´Bn`1

n ` 1

(5.64)

since B2k`1 “ 0 for k P N.

(5.62) ñ ζp2nq “ 22nπ2n´1 sinpπnqΓp1 ´ 2nqζp1 ´ 2nq, n P Nbb

“
p2πq2np´1qn

2p2n ´ 1q!
¨

´B2n

2n

“
p´1qnp2πq2n

2p2nq!
B2n, n P N

(5.65)
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6 Riemann Mapping Theorem

6.1 Normal families

6.1.1 The Arzela-Ascoli Theorem

Let F be a family of functions f , defined in a fixed region Ω Ă C, with values

in a metric space S. The distance function in S is denoted by d.

The functions in a family F are said to be equicontinuous on a set E Ă Ω if

for @ε ą 0, Dδ ą 0 s.t. dpfpzq, fpz0qq ă ε, @z, z0 P E with |z ´ z0| ă δ and @f P F .

Remark 6.1. Each f in an equicontinuous family is itself uniformly continuous on

E.

A family is said to be normal (or relatively compact) in Ω if every sequence

tfnu of functions fn P F contains a subsequence which converges uniformly on

every compact subset of Ω.

Remark 6.2. This definition does not require the limit functions of the convergent

subsequences to be members of F .

Let Ek :“ Ω X Bp0, kq X tz P C : dpz, BΩq ě
1

k
u, k P N.

Then Ek is bounded and closed, and hence compact.

@ compact set E Ă Ω is bounded and has positive distance from BΩ ñ E Ă Ek.

So the choice of Ek is representative.

Define δpa, bq “
dpa, bq

1 ` dpa, bq
. It is easy to check that δ is a metric and has the

advantage of being bounded.

Define

δkpf, gq “ sup
zPEk

δpfpzq, gpzqq, ρpf, gq “

8
ÿ

k“1

δkpf, gq2´k (6.1)

It is easy to check that ρpf, gq is finite and is a distance between f and g on Ω.
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Lemma 6.3. fn Ñ f on every compact subset of Ω if and only if ρpfn, fq Ñ 0 as n Ñ 8.

Proof. "ð": @ε ą 0, DN P N s.t. ρpfn, fq ă ε, @n ě N.

(6.1) implies δkpfn, fq ă 2kε, @n ě N and @ fixed k P N. Then fn Ñ f on Ek

w.r.t. δ-metric, and hence w.r.t. the d-metric. ñ fn Ñ f on every compact subset

E of Ω since E Ă Ek for some k P N.

"ñ": Ek is a compact subset of Ω ñ fn Ñ f on Ek w.r.t. d-metric, and hence

w.r.t. δ-metric ñ δkpfn, fq Ñ 0 as n Ñ 8 for @ fixed k P N. Then

lim
nÑ8

8
ÿ

n“1

δkpfn, fq2´k DCT
ùùùùù

8
ÿ

n“1

lim
nÑ8

δkpfn, fq2´k “ 0 (6.2)

So ρpfn, fq Ñ 0 as n Ñ 8.

Theorem 6.4. A family F is normal iff its closure F w.r.t. ρ is compact.

Proof. "ð": F is compact ô @ infinite sequence of F has a limit point in F . So

from the lemma 6.3 F is normal follows. Then F is normal. "ñ": For fn P F ,

WLOG we assume fn P F zF for all large n. Then @n P N, Df̃n P F s.t. ρpfn, f̃nq ă

1

n
. F is normal ñ tf̃nu has a convergent subsequence tf̃nk

ukPN. i.e. f̃nk
Ñ f P F

on every compact subset of Ω. From the lemma 6.3 ρpf̃nk
, fq Ñ 0 as k Ñ 8 ñ

ρpfnk
, fq Ñ 0 as k Ñ 8 since

ρpfnk
, fq ď ρpfnk

, f̃nk
q ` ρpf̃nk

, fq ď
1

nk
` ρpf̃nk

, fq (6.3)

Theorem 6.5. The family F is totally bounded w.r.t. ρ iff for @ compact set E Ă Ω and

@ε ą 0, Df1, f2, ¨ ¨ ¨ , fn P F s.t. every f P F satisfies dpf, fjq ă ε on E for some j.

Proof. "ñ": F is totally bounded ñ @ε ą 0, Df1, ¨ ¨ ¨ , fn P F s.t. @f P F ,

ρpf, fjqε for some fj . Then (6.1) implies δkpf, fjq ă 2kε for each fixed k P N ñ
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δpfpzq, fjpzqq ă 2kε, @z P Ek ñ dpfpzq, fjpzqq ă
2kε

1 ´ 2kε
, @z P Ek, @k fixed and ε

small enough.

"ð" Fix ε ą 0, pick k0 P N s.t. 2´k0 ă
ε

2
. @f P F , Dj0 P t1, 2, ¨ ¨ ¨ , nu s.t.

δpfpzq, fj0pzqq ď dpfpzq, fj0pzqq ă
ε

2k0
, @z P Ek0 . Then δkpf, fj0q ă

ε

2k0
, @k ď k0. ñ

ρpf, fj0q ă k0 ¨
ε

2k0
` 2´k0 ă ε

Theorem 6.6 (Arzela-Ascoli Theorem). A family of continuous functions with values

in a complete metric space S is normal in the region Ω Ă C iff (1) F is equicontinuous

on every compact set E Ă Ω. (2) @z P Ω, tfpzq : f P F u lie in a compact subset of S.

Proof. "ñ": F is normal
theorem 6.4

ñ F is compact w.r.t. ρ ñ F is totally bounded

w.r.t. ρ ñ F is totally bounded w.r.t. d by theorem 6.5.

Let E Ă Ω be compact. @ε ą 0, determine f1, ¨ ¨ ¨ , fn P F as in the previous

theorem. F is equicontinuous on E ñ Dδ ą 0 s.t.

dpfjpzq, fjpz0qq ă ε, @z, z0 P E with |z ´ z0| ă δ

@f P F . Let fj0 be the corresponding fj from the previous theorem. Then

dpfpzq, fpz0qq ď dpfpzq, fj0pzqq ` dpfj0pzq, fj0pz0qq ` dpfj0pz0q, fpz0qq ă 3ε (6.4)

So we prove (1). To prove (2), we prove tfpzq : f P F u is compact. Let tω0u be a

sequence in tfpzq : f in F u. Then @ωn, Dfn P F s.t. dpfn, ωq ă
1

n
. F is normal ñ

D convergent subsequence tfnk
pzqu ñ tωnk

u converges to the same value.

"ð" Choose any sequence tζju which is dense in Ω. Let tfnu be any sequence

in F .

tfnpζ1qunPN is in a compact subset of S. ñ D a convergent subsequence

tfn,1pζ1qunPN.
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tfn,1pζ1qunPN is in a compact subset of S. ñ D a convergent subsequence

tfn,2pζ1qunPN ¨ ¨ ¨

Continue this steps and we obtain the subsequence tfn,nu that converges at

each ζj .

Let E Ă Ω be compact ñ dpE, BΩq ą 0 ñ r :“
dpE, BΩq

2
, K “

ď

zPE

Bpz, rq has

closure K Ă Ω.

F is equicontinuous on K ñ @ε ą 0, Dδ ă r s.t.

dpfpzq, fpz0qq ă
ε

3
, @z, z0 P K with |z ´ z0| ă δ (6.5)

@z P E, Bpz, δq contains some ζj ñ Bpζj, δq contains z.

E is compact ñ DN P N s.t. E Ă

N
ď

j“1

Bpζj, δq for some ζ1, ζ2, ¨ ¨ ¨ , ζN . By the

construction of fn,n, DNε P N s.t.

dpfn,npζjq, fm,mpζjqq ă
ε

3
, @m,n ě Nε, @j “ 1, 2, ¨ ¨ ¨ , N

@z P E, Dζj0 “ ζj0pzq s.t. |z ´ ζj0 | ă δ for some j0 P t1, 2, ¨ ¨ ¨ , Nu.

(6.5) ñ dpfpzq, fpζj0qq ă
ε

3
, @f P F

Then

dpfn,npzq, fm,mpzqq ď dpfn,npzq, fm,mpζj0qq ` dpfn,npζj0q, fm,mpζj0qq ` dpfm,mpζj0q, fm,mpzqq

ă ε, @m,n ě Nε

So tfn,nu is uniformly Cauchy on E ñ tfn,nu converges uniformly on E.

Remark 6.7. In the text, p.233, it is erroneously assumed that ζk P E.
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6.1.2 Montel’s Theorem

Theorem 6.8 (Montel’s Theorem). A family of analytic functions F is normal w.r.t.

C iff the functions in F are uniformly bounded on every compact set of Ω, where Ω is a

region in C

Proof. "ñ": For @z0 P Ω, Dr ą 0 s.t. Bpz0, rq Ă Ω. The Arzela-Ascoli theorem

implies F is equicontinuous on Bpz0, rq and |fpz0q| ď M for some M ą 0 and

@f P F . So for @ε ą 0, Dδ ą 0 s.t. |fpzq| ď M ` ε for @z P Bpz0, δq.

Any compact set can be covered by a finite number of such Bpz0, δq ñ F is

uniformly bounded on every compact set.

"ô" Arzela-Ascoli theorem shows that it suffices to prove equicontinuity. Let

E Ă Ω ñ Dr “
4

dpE, BΩq
ą 0 s.t. K “

ď

zPE

Bp2rq has closure K Ă Ω.

Let M “ sup
fPF

sup
zPK

|fpzq|. Then M ă 8. For @z, z0 P E satisfying |z ´ z0| ă r, let

γ be the circle |ζ ´ z| “ 2r which is contained in K Ă Ω. We also have |ζ ´ z| “ 2r,

|ζ ´ z0| ą r for @ζ P γ. Cauchy’s formula implies

fpzq ´ fpz0q “
1

2πi

ż

γ

„

fpζq

ζ ´ z
´

fpζq

ζ ´ z0

ȷ

dζ “
z ´ z0
2πi

ż

γ

fpζq

pζ ´ zqpζ ´ z0q

for @f P F . For @ε ą 0, let δ “ mint
εr

M
, ru ñ |fpzq´fpz0q| ď

1

2π
¨
4πr

2r2
M |z´z0| ď ε,

@z, z0 P E with |z ´ z0| ă δ, @f P F . ñ F is equicontinuous on E.

6.1.3 Marty’s Theorem

For S “ Ĉ, we use the chordal metric dpz1, z2q “
2|z1 ´ z2|

a

p1 ` |z1|2qp1 ` |z2|2q
.

Lemma 6.9.

1 If a sequence of meromorphic functions converges in the sense of chordal metric,
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uniformly on each compact subset of Ω, then the limit function is either meromor-

phic or ” 8 in Ω.

2 If a sequence of analytic functions converges in the same sense, then limit function

is analytic in Ω or ” 8 in Ω

Proof. (1) Suppose fn Ñ f in each compact subset of Ω. Then f is continuous in

the chordal metric. @z0 P Ω, if fpz0q ‰ 8, then f is bounded in a neighborhood

of z0 by continuity, and thus fn ‰ 8 in the same NBHD of all large n. Applying

Weierstrass theorem 5.1, we get that f is analytic in a neighborhood of z0.

For fpz0q “ 8, dp
1

z1
,
1

z2
q “ dpz1, z2q ñ

1

fn
Ñ

1

f
on each compact subset. It

follows that
1

f
is analytic in a neighborhood of z0 by Weierstrass theorem 5.1.

So f is either meromorphic in this neighborhood or f ” 8 i.e.
1

f
” 0 in this

neighborhood.

The latter case shows that f ” 8 on Ω since we just proved f´1p8q is open,

and it is clear that f´1p8q is relatively closed in Ω.

(2) For z0 P Ω, if fpz0q ‰ 8, similarly f is analytic in a neighborhood of z0. If

fpz0q “ 8, then
1

fn
‰ 0 for @ z in a neighborhood of z0 implies that

1

f
” 0 in a

neighborhood of z0 ñ f ” 8 on Ω by Hurwitz Theorem 5.3.

Remark 6.10. It shows that Hurwitz theorem 5.3 can restrict the codomain of f if

such codomain of fn are restricted to the same region.

Theorem 6.11 (Marty’s Theorem). A family of analytic or meromorphic functions F

is normal w.r.t. Ĉ iff

ρpfqpzq :“
2|f 1pzq|

1 ` |fpzq|2
(6.6)

are locally bounded i.e. tρpfq : f P F u is bounded in a neighborhood of each point

z P Ω.
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Proof. "ð" Arzela-Ascoli Theorem 6.6 implies that it suffices to prove F is

equicontinuous on every compact set in Ω.

Define the sperical length of a path γ in Ĉ is defined by Λpγq “
ş

γ

2|dz|

1 ` |z|2
.

The sperical distance between z1, z2 P Ĉ is dSpz1, z2q “ inf
γ
Λpγq, where infi-

mum is taken over all paths connecting z1 and z2.

ds and d are equivalent, i.e. C1dpz1, z2q ď dSpz1, z2q ď C2dpz1, z2q for some

z1, z2 P Ĉ, 0 ă C1 ă C2 ă `8.

To prove the equicontinuity in a compact set E Ă Ω, it is proved that F is

equicontinuous on disks D w.r.t. D Ă Ω. @z1, z2 P D, γptq “ tz1 ` p1 ´ tqz2,

t P r0, 1s,

dSpfpz1q, fpz2qq ď

ż

fpγq

2|dω|

1 ` |ω|2

ω“fpzq
ùùùùùù

ż

γ

2|f 1pzq||dz|

1 ` |fpzq|2

“

ż

γ

ρpfqpzq ¨ |dz| ď M

ż

γ

|dz| “ M |z ´ z0|

"ñ": Suppose F is normal but tρpfq : f P F u is not bounded on a compact set E,

from which Dfn P F such that sup
zPE

ρpfnqpzq ą n for @n P N follows.

We may assume fn Ñ f on every compact set pf Ω. Then lemma 6.9 implies

@z0 P E, we can find a small disk in Ω s.t. either f or
1

f
is analytic in this disk.

If f is analytic, then it is bounded in the closed disk ñ fn has no poles in

this disk for all large n ñ ρpfnq Ñ ρpfq on a slightly smaller disk by Weierstrass

theorem 5.1 ñ ρpfq is continuous in this smaller disk ñ ρpfnq is bounded on the

smaller disk.

If
1

f
is analytic, the same proof applies to ρp

1

fn
q which is equal to ρpfnq.
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6.2 The Riemann Mapping Theorem

6.2.1 Statement and proof

Theorem 6.12 (Riemann Mapping Theorem). Given any simply connected region Ω

which is not the whole place, and a point z0 P Ω, there exists a unique analytic function

f in Ω, normalized by the condition fpz0q “ 0, f 1pz0q ą 0 s.t. f defines a one-to-one

mapping of Ω onto the unit disk D “ tω P C : |ω| ă 1u.

Proof. Uniqueness: Suppose there are two such functions f1 and f2. Then f1˝f´1
2 :

D Ñ D is 1´1 are onto. By Schwarz lemma 4.48, f1 ˝f´1
2 “ eiφ

z ´ α

1 ´ ᾱz
for some α P

D, φ P R. f1 ˝ f´1
2 p0q “ 0, pf1 ˝ f´1

2 q1p0q “ f 1
1pf´1

2 p0qqpf´1
2 q´1p0q “ f 1

1pz0q
1

f 1
2pz0q

ą 0

ñ f1 ˝ f´1
2 pzq “ z, @z P D. ñ f1pzq “ f2pzq, @z P D.

Existence:

Lemma 6.13. If Ω is simply connected and Ω ‰ C, D 1-1 analytic function h : Ω Ñ C

s.t. hpΩq does not intersect a disk Bpω0, δq for some ω0 P C and δ ą 0.

Proof of Lemma. Da P CzΩ. Ω is simply connected. Corollary 4.55 ñ We can define

an analytic function h on Ω s.t. h2pzq “ z´a. If hpz1q “ ˘hpz2q for some z1, z2 P Ω,

then z1 ´ a “ z2 ´ a ñ z1 “ z2. The open mapping theorem 4.42 ñ hpΩq contains

a disk Bphpz0q, δq ñ hpΩq X Bp´hpz0q, δq “ H ñ |hpzq ` hpz0q| ą δ, @z P Ω. In

particular, 2|hpz0q| ą δ.

Let F be the family of functions with the following properties:

À g is analytic and 1-1 in Ω

Á |gpzq| ď 1 on Ω

Â gpz0q “ 0 and g1pz0q ą 0.
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We first prove F is not empty. Let

g0pzq “
δ

4
¨

|h1pz0q|

|hpz0q|2
¨
hpz0q

h1pz0q
¨
hpzq ´ hpz0q

hpzq ` hpz0q
, z P Ω

where δ and h are defined in the previous lemma.

h is 1-1 ñ g0 is 1-1. g0pz0q “ 0 and g1
0pz0q “

δ

8
¨

|h1pz0q|

|hpz0q|2
ą 0.

|g0pzq| “
δ

4
¨

1

|hpz0q|
¨

ˇ

ˇ

ˇ

ˇ

hpzq ´ hpz0q

hpzq ` hpz0q

ˇ

ˇ

ˇ

ˇ

“
δ

4

ˇ

ˇ

ˇ

ˇ

1

hpz0q
´

2

hpzq ` hpz0q

ˇ

ˇ

ˇ

ˇ

ď
δ

4

«

1

|hpz0q| ` 2
|hpzq`hpz0|q

ff

ď 1

We next prove that Df P F with maximal derivative at z0. Cauchy’s estimate

implies @r ą 0 with Bpz0, rq Ă Ω, @g P F ,

|g1pz0q| “

ˇ

ˇ

ˇ

ˇ

1

2πi

ż

|z´z0|“r

gpζq

pζ ´ z0q
dζ

ˇ

ˇ

ˇ

ˇ

ď
1

2π
¨
1

r2
¨ 2πr (6.7)

So t|g1pz0q| : g P F u is bounded, and has a supremum B “ sup
gPF

|g1pz0q|.

D a sequence tgnunPN in F s.t. g1
npz0q Ñ B as n Ñ 8. |gn| ď 1 on Ω so

by Montel’s theorem 6.8, there exists a subsequence tgnk
ukPN of tgnunPN s.t. gnk

converges uniformly to f on every compact subset of Ω. Weierstrass theorem 5.1

implies f is analytic in Ω. And fpz0q “ lim
kÑ8

gnk
pz0q “ 0, |f 1pz0q| “ lim

kÑ8
|g1
nk

pz0q| “

B ą 0 ñ f is not a constant since |f 1pz0q| “ B ą 0.

@z1 P Ω, define g̃nk
pzq “ gnk

pzq ´ gnk
pz1q, @z P Ω. g̃nk

pzq ‰ 0 for @z P Ωztz1u.

Then by Hurwitz’s theorem 5.3, f̃pzq “ fpzq ´ fpz1q ‰ 0 for @z P Ωztz1u since f is

not constant. Then fpzq ‰ fpz1q for @z ‰ z1 ñ f is 1-1 on Ω.
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We finally prove that f P F .

If Dω0 P D s.t. ω0 R fpΩq. As before, we can define an analytic function F on Ω

s.t.

F 2pzq “
fpzq ´ ω0

1 ´ ω0fpzq
(6.8)

It is clear that F is 1-1 and satisfies |F pzq| ď 1 for @z P Ω. F can be normalized as

follows: Gpzq “
|F 1pz0q|

F 1pz0q
¨
F pzq ´ F pz0q

1 ´ F pz0qF pzq
. Then G is 1-1, |Gpzq| ď 1, @z P Ω, and

Gpz0q “ 0. Moreover,

G1pz0q “
|F 1pz0q|

1 ´ |F pz0q|2
“

|f 1pz0q|r1 ´ |ω0|
2s

2
a

|ω0|r1 ´ |ω0|s
“

1 ` |ω0|

2
a

|ω0|
¨ |f 1pz0q| ą |f 1pz0q| “ B (6.9)

which causes a contradiction.

So fpΩq “ D
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Möbius transformation, 6, 12
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order, 85
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region, 9
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removable singularities, 32
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reversible , 10
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rotation, 13

Schwarz Formula, 62
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singular part, 7

singular point, 7
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sperical length, 97
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symmetric, 14
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Taylor’s Theorem, 34
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