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2 Complex Functions

2.1 Analytic functions and rational functions

2.1.1 Harmonic function

Definition 2.1 (Cauchy-Riemann equation).

ou  Ov ou ov

dr oy dy O

Definition 2.2 (Harmonic function). A function u is harmonic if it satisfied
Laplace equation Au = 0.

If two harmonic function © and v satisfies Cauchy-Riemann equations, then
we say that v is conjugate harmonic function of © = v is conjugate harmonic of

—.

2.1.2 Polynomials and rational function

The polynomial P(z) = >, a;2’ is analytic in C.
j=0
We will prove the fundamental theorem of algebra

Theorem 2.3 (Fundamental Theorem of Algebra). Every polynomial with degree n >

0 has at least one point.

Theorem 2.4 (Gauss-Lucus theorem). The smallest convex polygon that contain the

zeros of P also contains the zeros of P'.

Proof. Only need to check.

We can get this equation.




Hence a is linearly represented by «;. O

Proposition 2.5. Let P and () be two polynomial with no common zeros. Then the

P(z)

rational function R(z) = %) is analytic away from the zeros of Q).
The zeros of Q are called poles of R, and the order of a pole is equal to the order of the

corresponding zero of Q).

We often view R as a function from C to C. R, (z) := R(1).

If R,(0) = 0, the order of the zero at o (of R) is the order of the zero of R;(z)
atz = 0.

If R,(0) = o, the order of the pole at oo (of R) is the order of the pole of R;(z)
atz = 0.

Suppose

R(z) — a2 + -+ a1z + ag

= n 7 0,0, #0
bmzm+---+b1z+b0’a ” ”

Then
ap2" + -+ ay
boz™ 4 -+ - + by,

Ry(z) =z2z"""

By discussing m and n, we can infer the situation of R(z) at 0.

By adding the order of poles and zeros at oo, we can get the following theorem.
Theorem 2.6. The total number of zeros and poles of a rational function are the same.
Remark 2.7. This common number is called the order of the rational function.

Corollary 2.8. Suppose a rational function R has order p. Then every equation R(z) = a

has exactly p roots.

Proof. R(z) = R(z) — a has the same poles as R. O

A rational function of order 1 is a linear fraction R(z) = ZZZIS’ ad —be # 0
Such fraction is often called Mdbius transformation

Every rational function has a representation by partial fractions.
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¢ If R has a pole at . Then we can write
R(z) = G(2) + H(z) (%)

where G is a polynomial without constant term, and H is finite at oo.
The degree of G is the order of the pole of R at co. G is called the singular

part of R at .

* Let the distinct finite poles of R be (i, - - - , Bi. Let R;(¢)) = R(B; + i) Then

R; is a rational function with a pole at c0. As in (*), we can write

with H; finite at co. Then
R(:) = Gyl =) + H(—)
=B z =B
with G; is a polynomial in ﬁ without constant term called the singular

point of R at j3;.
k
e Let F(z) = R(2) — G(z) — >] G](#)
j=1 ’
Then F is a rational function which can only have poles among 3;, «©
Since by our construction, F is finite at every 3;,1 < j < k and .
So F'is a constant.

K
In particular, R(2) = G(2) + >, Gj(=1-) +c.

s
j=1 %




2.2 Power Series

2.2.1 Power series

Theorem 2.9 (Abel’s theorem). If > a, converges, then f(z) = > a,z" — f(1) as
1— 2]

remains bounded.
1 —|2]

z — 1 in such a way that

2.3 Exponential, Trigonometric and Logorithmic Functions

2.3.1 Exponential and Trigonometric function

The exponential function is defined as the solution if the differential equation

2n

n!*

We denote e* = expz = ),
n=0

The trigonometric function are defined by

eiz + e—iz ) eiz _ e—iz
COSZ = ———— SIMg = ——
2 21

2.3.2 Logorithmic Functions

The logorithmic function In is defined by z = Inw is a root of the equation
= w.

For w # 0, we write z = x + iy, then

" = [wl

+iy _
T — ) = eiy:ﬂ
|wl



The first equation has a unique solution = = In |w|.
w

|w]

If we write w = re?, then z = Inw,y = 0 = argw.

The second equation e = has a unique solution y, € [0, 27).

Thus, for w # 0, we have
Inw =In|w| +iargw

The function In is actually not single-valued. But we can define a single-valued
function Ln

We define

a® = exp(blna)

We will prove Ln is analytic in C — (—0, 0] but not continuous in (—oo, 0].

Ln is the principal branch of the logithm.

3 Conformal Mappings

3.1 Basic topology

3.1.1 Connectedness

Theorem 3.1. A nonempty open set in C is connected iff any two of its points can be
joined by a polygon which lies in the set, i.e. Connectedness is equivalent to Path Con-

nectedness

An nonempty connected subset is called a region



3.1.2 Compactness

Definition 3.2. A set X is totally bounded if Ve > 0, X can be covered by finitely

many balls of radius ¢
Theorem 3.3. A set is compact iff it is complete and totally bounded.

Theorem 3.4. A subset X < is compact iff every infinite sequence of X has a limit point

inX.

3.1.3 Continuous Functions

Theorem 3.5. Continous function maps connected space to connected space.

Theorem 3.6. Continous function maps compact space to compact space.

3.2 Conformality, geometric consequences of the existence of a

derivative

3.2.1 Arcs and closed curves

The equation of an arc r in C can be represented by one of the terms

e x=ux(t),y =y(t), « <t <,z yare continuous at ¢
° 2(t) =a(t) +iy(t), a <t < .
e The continuous mapping v : [a, 5] — C.

For a non-decreasing function ¢ : [, 8] — [a, 5], 2 = 2z(¢(t)), ¢/ < 7 < ' is
change of parameter of z(t).

The change is reversible iff ¢ is strictly increasing.

If 7 is differentiable, then call v a curve.

v is simple , or a Jordan curve, if 7 is injective.

7 is closed curve if y(0) = v(1).

10



3.2.2 Analytic Functions in Regions

A function f is analytic on an arbitrary set A if it is the restriction to A of a

function which is analytic in some open set containing A.

Theorem 3.7. An analytic function in a region(i.e. open and connected) ) whose deriva-
tive is 0 must reduce to a constant. The same hold if the real part, the imaginary part, the

modulus, or the argument is constant.

3.2.3 Conformal Mappings
Suppose f : Q@ — Cisanalyticin 2. 7 = 21 (t), 72 = 22(t), a < t < .
z20 = Zl<t0) = 22<t6>, Zi(t()) #* O,Zé({o) #* 0,0é < to,tAO < 6
F(z0) # 0,wi(t) = f(21(t)), wa = f(z2((t)))

Iy = {wi(t)]a <t < B, Ty = {wy(t)|a <t < B}
Then

wy(to) # 0, wy(ty) # 0
argw) (to) = arg f'(z1(to)) 2 (to)

arg wh(to) = arg f’(z2(t0))z5(to)

So the "angle" arg w) (tg) — arg w}(ty = arg z1(ty) — arg 2,(f) remains the same.

Now we give the definition.

11



Definition 3.8. w = f(z) is said to be conformal in Q2 if f is analytic in {2 and

f'(z) # 0 for Vz € Q.

Easy to prove that linear change of scale at z, is independent of the direction.

ie. |f'(zo)] = zlgl;lo g

3.24 Length and Area

The length of a differentiable arc v with the equation z(t) = x(t) + iy(¢), a <

b b
Liy) = f V@2 + (702t = f 2/()dt

For I' = f(v) where f conformal mapping.

Then
0= [ o

The area of £ c Ris A(E) = {{, dzdy

t<b

Then by the differentiable functional transformation, the area E = f(E)is

= JJ w0y — uyvg|dedy
E

If f is the conformal mapping of an open set containing £, then by Caucht-

- | | 1re)pasay

3.3 Mobius Transformation

Riemann equation

Recall that a Mobius transformation is a function of the form

az+b

d—2b
cz+d’ “ ¢#0

w=s(z) =

12



dw—0b

—cw+a

We may define S(0) = lim S(z) = ¢, S(=4) =
2—00

[

Then it has an inverse z = S~} (w) =

With these definition, S : C — C is a topological mapping. Here one may use the

chordal metric to define the topology.

ad — bc
'(2) = (cz + d)?
Then S is conformal in C — {—4, 0}
w = z + «is called a parallel translation.
w = kz with |k| = 1 is a rotation.

w = kz with £ > 0 is a homothetic transformation.

z = 1 is called an inversion.

Proposition 3.9. Every Mobius transformation is a composition of the above four opera-

tions.

3.3.1 Cross ratio

For three distinct points 29, 23, 24 € C,we can find a Mobius transformation S

such that S(z2) = 0, 5(23) = 1,5(z4) = 0.
Lemma 3.10. The Mobius transformation satisfying the above conditions is unique.

The cross ratio (z1, 22, 23, 24) is the image z; under the Mobius transformation

which maps 2 to 1, z3 to 0 and 2, to .

21 —R3 22— 24

(3.1)

(21722;Z37Z4> =
21— R4 22— 23

Theorem 3.11. If 2y, 25, 23, 24 € C are distinct, and T is any Mobius transformation,

then (TZl, TZQ, TZg, TZ4) = (Zl, Z9, 23, 24).

13



Lemma 3.12. Let T' be a Mobius transformation, T (R) is either a circle or a straight line.

Theorem 3.13. The cross ratio (21, 22, 23, 24) is real iff the four points lie on a circle or a

straight line.
Remark 3.14. One may prove the theorem by elementary geometry

Theorem 3.15. A Mobius transformation maps circles into circles.

3.3.2 Symmetry

Suppose T is a Mobius transformation which maps R onto a circle C.

We say that w = Tz and w* = Tz are symmetric w.r.t. C.

Remark 3.16. This definition is independent of 7. Suppose S is another M&bius
transformation which maps R onto C, then S—IT maps R to R, and this S~1w =

S~'Tzand S~'w* = S~'Tz are conjugate.

The points z and z* are symmetric w.r.t C through z;, 25, 25 iff (2%, 21, 29, 23) =
This can be another definition.
Note that only the points on C' are symmetric to themselves.

The mapping z — z* is 1-1 and is called reflection w.r.t. C.

Geometric Meaning of Symmetry
Casel: C'is a straight line. We may assume z3 = o0.

z,z* are symmetric w.r.t. C if and only if

Z*—Zg 2—2_2

21— 2y 21— 29
Then
2" — 29| = |z — 2|, VzeCandzy # ©

14



* _ _
ZT — 29 Z — 29
Im =Im — =

Z1 — %2 Z1 — %9

So C'is the bisecting normal of the segment between z and z*.

Case2: C'is the circle |z — a| = R.

Then for V distinct 21, 25, 23 € C, (2,21, 22,23) = (2 —a,21 —a, 29 — a,23 — a)

R? R? R? R?
=(z—-a,z1—a,52—a,z3—a) =(zZ—a, , , )=(——,21—a,z—
21—G Z9—aG 23— G Z—a
a,z3 —a)
R2
= (ﬁ;2’1722,23)-

Then the symmetric point of z w.r.t. C'is

or

|z* —a| |z —a| = R?

* ® 5 _ =
z a:(z a)(z a)>0
z—a |z — al?

Theorem 3.17 (The Symmetric principle). If a Mobius transformation maps a circle
C onto a circle Cy, then it transforms any pair of symmetric points w.r.t. Cy into a pair

of symmetric points w.r.t. Cs.

Proof. Casel: C; = R. Let T be the Mobius transformation which maps R onto Cs.
Vz € C, by definition, w = Tz and w* = T’z are symmetric w.r.t. Cs.

Case2: () is a general circle. LetT : C; — Cy and S : R — C; be Mobius
transformation.

Suppose w, w* are symmetric w.r.t. C';. Then there exists z s.t. w = Sz,w* =

15



SZz.
Then we can find Tw = T'Sz, Tw* = T'SZ are symmetric w.r.t. C; since T'S : R —

Cs O
Remark 3.18. (1). The Mobius transformation from C; to C, satisfies z; —

W, 29 = Wa, 23 —> W3 where Z1,%2,23 € Cl, w1, W, W3 € CQ is given by

(w7 Wi, Wa, ’LU3) = (Zy 21, %2, 23, )

(2). The Mobius transformation from C; to Cs satisfies z; — wy, 25 — ws Where

21 € 01722 ¢ Cl, w1 € CQ,’U]Q ¢ Cg is given by
(w, wi, wa, w3) = (2, 21, 22, 25)

3.3.3 Steiner Circles, circular net

az+b (2) = ad — bc
cz+d C (cz+d)Y
A point z ¢ a circle C'is said to on the right(left, resp.) of C'if Im(z, 21, 22, 23) >

For S(z) =

0(Im(z, 21, 22, z3) < 0)
Remark 3.19.
(1). This agrees with everyday use since (i,1,0,0) =14

(2). This distinct between left and right is the same for all triples, while the

meaning may be reversed.

. b
(If C = R, then (z, 21, 29, 23) = azi— with a,b,¢,d € R = Im(z, 21, 29, 23) =
cz
ad — bc
—1
oo+ ap )

(3). We can define an absolute positive orientation of all finite circles by requir-

ing that co should be lie to the right of the oriented circles.

16



Consider a Mobius transformation of the form

w=k-

z—>b

Here,z =a— w=0,2=b+— w = 0.
Then circles through a, b maps to straight line through 0, cc.
The concentric circle about the origin, |w| = p, correspond to circles with the

equation

These are the circles of Apollonius with limit points a and b.

Denote by C; the circles through a,b and C; the circles of Apollonius with
these limit points. The configuration formed by all the circles C; and C is called

the Steiner circles(or circular net)
Theorem 3.20.
(a) There is exactly one Cy and one Cy through each point in C\{a, b}
(b) Every C, meets every Cy under right angle.
(c) Reflection in a C transforms every C, into itself and every C into another C.
(d) The limit points a, b are symmetric w.r.t. each Cy, but not w.r.t. other circles.

Proof. If the limit points are 0, 0, those properties are trivial in the w-plane. The
general case follows since all properties are invariant under Mobius transforma-

tions. u

3.4 Elementary Conformal mapping
Example 3.21. w = z* where a > 0.

17



Let S(uy, us) with 0 < s — 3 < 2mbe {ze€C: 2z # 0,9 < arg(z) < p2} where
arg(z) can be chosen as any value of it.

Then S(p1, 2) is a region.

In this region, a unique value of w = 2“ is defined by argw = a arg z.
w
ot

d
This function is analytic with d_w =«
z

This function is 1 — 1 only if a(ps — 1) < 2.
Example 3.22. w = ¢* maps {z € C : —g <Im(z) < g} onto {w € C : Re(w) > 0}
-1
Example 3.23. w = z? maps {z € C: Re(z) > 0} onto {w € C: |w| < 1}

Example 3.24.

z9—1
Z1=Z+l _ 29

C\[-1,1] 2255 €\ (— o0, 0] 2275 (Re(zy) > 0) 25 fwe C: jw| <1} (3.2)

3.4.1 Elementary Riemann surfaces

Example 3.25. w = 2", ne Z, and n > 1.

k—1)2
There is a 1-1 correspondence between each angle (k= 1)2m < argz <
n
k-2
W, k=1,2,---,nand while w-plane except for the positive real axis.
n

Example 3.26. w = ¢*. This function maps each parallel strip (k — 1)27 < Imz <

k - 27, k € Z onto a sheet with a cut along the positive axis.

18



4 Complex Integration

4.1 Fundamental Theorems

4.1.1 Line integral and rectifiable arcs

Let f(t) = u(t) + iv(t) be a complex-valued defined on ¢ € [a, b] = R where u, v

are real-valued functions. If f is continuous on [a, b], we may define the integral

Lbf(t)dt — Lbu(t)dt +ifbv(t)dt

a

Let v be a piecewise differential arc in C with the equation z = z2(t),a <t < b.

If f is continuous on 7, then f(z(¢)) is continuous on [a, b], and we define

b
f f(z)dz = f F(2(8) 2 (Bt (4.1)

The integral defined in 4.1 is independent of the parametrization of v. Suppose
that anther parametrization of yis v : (o, 8) — C,7 — 2(t(7)), where t : (o, 5) —

(a,b), T — t(7) is piecewise differentiable. Then we have

b A A Z\T\T
[ sz wa = [ seumnaema - [ reaen i @

For an arc vy with equation z = 2(¢),a < t < b, we define —y by z = 2(—t),—b <
t < a.

Then we have

dt

[IRCEE [ reem =

19



So we have those properties:

Proposition 4.1.

@ [ )= - f 4
Y

-

(b) Let f and g be two continuous functions on the piecewise differentiable arc , then
J(Mf + Aag)dz = /\1J fdz + )\QJ gdz, YA, A2 € C
v v v

(c) If v can be subdivided into two pieces differentiable arcs ~, and ~y,, and f is contin-

Lfdz:Lfdz+L2fdz

(d) (c) implies that the integral of a closed curve doesn’t depend on the starting point

uous on y; , then

on the curve

dz where ~ is the circle centered at a € C with
z—a

Example 4.2. Evaluate J

N
radius R.

Let z = z(t) = a + Re'". Then the integral is 27

4.1.2 The fundamental theorem of Calculus for integrals in C

The line integral w.r.t. Z is defined by

Lf(z)& = Lmdz
20



With this notation, line integrals w.r.t. z = Re(z) and y = Im(z) can be defined by

J s =31 sz | 1)
| s =1 s | s

if we write f(z) = p + iv, we have

Jf dz—Jf d:c+sz Judx—ydy)+zf(udx+udy)

Remark 4.3. It is followed by the intuition. We can view the integration as the

multiplication between f and dz.

The integral w.r.t. arc length is defined by

ff )ldz] = ff o

This integral is again independent of the parametrization. It is easy to check

| semel= | seiae

Now we define length of a curve v: L() = SV |dz|

We have the inequality:

fdz
-

<j f1-|dz] < L(v) - sup | (2)]

2Ky

The length of an arc v (z = z(t)) can also be defined as the least upper bound of

21



all sums

Z |2(t:) — 2(ti-1)]

i=1
wherea =ty <t; <--- <t, = bIf this least upper bound is finite, we say that the
arc is rectifiable

It is easy to show that piecewise differentiable arcs are rectifiable.

The integral of a continuous function f on a rectifiable arc may be defined as

| #ez =t 3} fe@0)a) - 2(0o0)

Theorem 4.4. Let Q2 = C be a region, and P, Q) two (possibly complex-valued) functions

that are continuous on S, 7y closed curve. The integral S P(z,y)dz + Q(x, y)dy depends

only on the end point of v iff there exists a function U (x, y) on Q with Z—U = P = Q.

Proof. "<": If such a U exists, then

me+gw—f5U v j—@r— A(b)) = Uly(a))

"=": Fix a point (x¢,yo) € 2. We define U(x,y) = Sv Pdx + Qdy where v is any

curve between (zo, yo) and (z,y). Easy to check that it is true. O

Theorem 4.5 (Fundamental theorem of Calculus for integrals on C). Let f be con-
tinuous on a region ) containing . Sv fdz depends on the endpoints iff f is the derivative

of an analytic function F in €.

Remark 4.6. We will prove f fdz = F(wy) — F(w1) where v begins at w; and ends
Y

at ws.

Proof. Transform the line integration into the composition of two real integration.

]

22



Corollary 4.7. If F' is analytic on Q with F' = f, and vy is a closed curve in S, then
Sw fdz = 0. Conversely if f is continuous on ) and SV fdz = 0 for any closed curve in

), then f is the derivative of an analytic function F in €.

4.1.3 Cauchy’s theorem for a rectangle

There are some notes in this section:
RistherectangleinC, R = {x +iye C:a <z < bc <y <d}. And dRis

boundary curve oriented in the counterclockwise direction.

Theorem 4.8 (Cauchy’s theorem for a rectangle). If f is analytic on an open set which

contains R, then | f(z)dz =0
R

Proof. For V rectangle R inside R, we define Z(R) = _f(z)dz. Then Z(R) =
Z(Ry) + Z(Ry) if R is divided into Z,, Z». "

Since we can divide R into four equal rectangles, and find a rectangle with
|Z(RM)| = 1Z(R)|. Then repeat the above steps and we obtain a sequence of

nested rectangles R > RV 5 ... with the property

Z(R™) > 1|Z(R<”—1>)| > > —Z(R) (4.3)

=~

V6 >0,IneN st. R™W c {zeC: |z — 29| < d},¥n = N, where z is the limit of
R™ asn — .

fisanalyticin R = Ve, 30 > 0 s.t.
— f'(20)

'M < e, Vzwith |z — z| < § (4.4)

zZ— 20

We assume that § satisfies both conditions. We have

Z(R™) = J

OR(™)

f(2)dz = f [F(2) = F(z0) — (2 — 20) f'(z0)]d

OR(™)
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= |Z(R™)| <5f |z — z9|dz by 4.4
OR(™)

Let d,, be the length of diagonal of R™ L. be the length of its perimeter. Then
|z — 20| < d,, V2 € ORM.

D L
= |Z(R™)| < ed,L,, = €5 om where D, L are the diameter and perimeter of
R.

4.

= |Z(R)| < 4" Z(R™)| < eDL = Z(R) = 0 since ¢ is arbitrary. O

w

We will next prove the following stronger theorem:

Theorem 4.9 (stronger version of Cauchy’s theorem for a rectangle). Let f be an-

alyticon R' = R\{¢n, -+ ,¢¥pn},m e N. If 1112.(2 — ;) f(z) = 0,Y1 < j < m, then
f(z)dz = 0.
oR

Proof. WLOG, we may assume f is not analytic at only one point ¢ € R. If we

put psi into a small rectangle S, then the previous theorem tells us §,, f(z)dz =

S(;SO f(2)dz.
Ve > 0, we may choose S, small enough such that |f(z)| < —|z 6_ - Vz e 05,
1
=|| f(z)dz< sj d Sep -4l =8
OR 0So0 |Z - 1/)| 3
= . f(2)dz = 0 since ¢ is arbitrary. 0

4.1.4 Cauchy’s Theorem for a disk
A:={zeC:|z— z| < R} where R > 0.

Theorem 4.10 (Cauchy’s Theorem for a disk). If f is analytic in an open disk A, then
§. f(2)dz = 0 for closed curve vy in A.

Proof. Suppose the center of A is zy = z¢ + iyo, 2 = x + iy. We define

F(z) = J f(z)dz
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where 7 is the horizontal line segment from 2, to (x,y,) added with vertical line

segment from (x, o) to z. We have

i 6l;r_>no 5 = 515210 5 N f(z)dz =if(z) (4.5)
By Cauchy’ theorem on rectangles, one has F(z) = —S f(2)dz, where 7 is the

vertical line segment from 2, to (zo,y) added with horizontal line segment from

(ZL'(), y) to z.
OF
Similarly, ‘ —= f(2).
oF oF

= o= _Zﬁ_ = F'is analytic in A with derivative f. By Fundamental
€ Y

Theorem 4.5 of Calulus = S f(2)dz = 0 for ¥ closed curve in A. ]
Here is a stronger version.

Theorem 4.11 (stronger version of Cauchy’s Theorem for a disk). Let f be analytic

inaregion A" = A\{1y, - -+, ¢, } withm € N. If f satisfies lirﬁ(z —1;)f(2) =0,V1 <

Jj < m, then J f(2)dz = 0,V~ closed in A’
vy

Proof. 1t is similar to the above proof.

For the case no v, lies on z = 27 and y = y,, we can find a similar curve y with
last segment is a vertical one. Let F(z) = S f(2)dz. And continue the process of
proof of the previous theorem.

For the case that 3 ¢; lies on the lines = zy, y = vy, we actually can move the

center to another point s.t. no ¢, lies on the lines x = z(, y = y;. O
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4.2 Cauchy’s integral formula

4.2.1 Index of a point with resect to a closed curve

Lemma 4.12. If the piecewise di]_‘ferentiable closed curve y does not pass through z € C,

then the value of the integral S - is a multiple of 2mi.

Proof. v: (¢ =((t),a <t <p.h(t)= Sl gf;gs—)zds‘

z € 7 = his defined and continuous on |«, ]. For all ¢ s.t. {'(t) is continuous,

we have
i () _ dr e _
W) = s = g 00 = 2] =0
So e "M (((t) — z) is constant on [« 3].
Then e"®) = % = e"® = 1= h(B) e {2kni: ke Z}. O

The index of the point z w.r.t. the closed curve 7 is the number

" omi C

n is also called the winding number.

Theorem 4.13. Let y be a piecewise differentiable closed curve. The function z — n(y, z)

is constant on each connected set of C\y, and zero zf this set is unbounded.

Proof. Define f : C\y — 7,2z — n(y, 2 =55 C

Then

1
21

|f(2) = f(20)] =

Z — 2o |z — zo| 1
L(c—zxc—zw <‘< o Lwc—zuc—m”‘

= f is continuous on each open connected set of C\y. Let {2 be any open con-
O)cZ
nected set of C\y. We have f(2) is connected DR f(€2) contains at most one

point = f is constant on €.
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If |z| is sufficient large, 3 a disk of radius R, B(0,R), s.t. v < B(0,R) but
z ¢ B(0, R). Cauchy’s theorem for a disk 4.10 tells us that f(z) = n(y, z) = 0. So it

is zero if this set is unbounded. O]

Lemma 4.14. Let 2y, 23 be two points on a closed curve v and 0 ¢ .

Suppose z in the lower half space and z, in upper half space. If v1 N {(2,0) : = <
0} = &, and vo N {(z,0) : © = 0} = &, then n(~,0) = 1.

Remark 4.15. One method to prove this lemma is to create two segment from z;
to the point in the unit circle. By divide the curve into two parts, we can easily
remove the part of previous curve by using the theorem 4.13, since 0 is in the
unbounded set.

In this proof, we can find that Theorem 4.13 is such powerful that we can

change any curve to a more simple curve easily!

4.2.2 Cauchy’s integral formula

Theorem 4.16 (Cauch’s integral formula). Suppose that f is analytic in an open disk

A\, and let ~ be a closed curve in /\. For Vz ¢ ~,

i 2)f() = 5 | Hac

where n(v, z) is the index of z w.r.t. 7.

Proof. If = ¢ A, The both sides of the equation is 0.

So we may assume z € A and z ¢ 7. Define F' : A\{z} - C,( — f<<2 — i"’(z)

Then F is analytic in A\{z}, and 11m( 2)F(C).

By Cauchy’s Theorem 4.9 = { F({)d( = 0 = f g )J C—%dg =
f(z) - 2mi-n(y,2) ' m
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Remark 4.17. This proof let us find that for a good-enough function, its integral
over a closed curve is a constant.

The theorem still holds if f is analytic except at a finite number of (; s.t.

lim (¢ — ¢;) f(¢) =

C"Cj
and z # (; for each j, since Cauchy’s theorem is still applicable.

Theorem 4.18 (The mean value property for analytic functions). f is analytic in a

region 2 which contain B(z, R). Then

21

f(z) = f(z+ Re®)dt

2 Jy

Proof. The previous theorem 4.16 =

b f(¢) ¢=ztRet 1 o . ot
f(2) = J| ac J f(z + Reitydt

2w Jie—ser € — 2 2 Jo

]

If f is analytic in an open disk A, and v is a closed curve in A. And n(y, z) = 1.
Then

27?2 C—z

This is usually referred to as Cauchy’s integral formula
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4.2.3 Higher derivatives

Lemma 4.19. Let 2 < C be a region and -y be an arc in ). If ¢ is continuous on vy, then

4
Fo(2) = L e

is analytic in each of the regions Q2\vy, and its derivative is F(z) = nF,+1(2)

the function

Proof. We prove it by induction.

The lemma is true if n = 0: Fy(z) = SW ¢(¢)d¢ and Fj(z) =0 =0- Fi(2).

We suppose that the lemma holds for n — 1 with n € N: ¥ continuous ¢ on 7,
F,_iisanalyticin Q\yand F,_,(z) = (n — 1)F,(2),Vz € Q\7.

Fix zo € Q\7y. For Vz € B(z0, 2), with B(z,0) < Q\7y, wehave [(—z| > £, V( € 7.

For V continuous ¢ on 7,

o)~ R = [ Bzt f

- )
- U (AL f e
Tl J < _gggggg )
Let 1/(¢) = w_@zo, which is continuous except 7.
Using the induction condition to 1, we can finish the proof. O

Theorem 4.20. An analytic function on a region ) has derivatives of all orders which
are analytic in . More precisely, ¥z, € (2, choose B(z,0) < Q and a circle C' = B(z,0)

with center zy. For V z in the interior of C, Cauchy’s integral formula gives

o~ L[ SO

211 Jo C— 2

d¢

29



Then the previous lemma implies f'(z) = 9 ). (Cf_(—i))de is analytic in the interior of
C'. More generally, for Vn € N,

fO(z) = — | ——r=d¢ (4.6)

4.2.4 Consequences of Cauchy

Theorem 4.21 (Morera’s Theorem). If f is continuous in a region ), and if SW f(z)dz =

0 for V closed curve y in ). Then f is analytic in ).

Proof. We proved in Corollary 4.7 that under the hypothesis of theorem, f = F”

where F' is analytic in (2. The last theorem = f is analytic. O

Suppose f is analytic in a disk, B(z, R), and bounded on the circle v given by
|z — 20| = R. ThenVz € v, | f(2)| < M for some M > 0. By (4.6),

n! M

w1 [ IO al
FOE) < 3 | il < 5= g

-2rR = MR "n! 4.7)

This inequality is known as Cauchy’s estimate.

Theorem 4.22 (Liouville’s Theorem). A bounded entire function (i.e. analytic in C) is

constant.

Proof. Suppose |f(z)| < M, Vz € C. Cauchy’s estimate =

M
bf' (=)l < 5. ¥z € C,YR >0 (4.8)

R—00

fl(z)=0forzeC= f =0.
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Theorem 4.23 (Fundamental Theorem for Algebra). Every polynomial of degree n >

1 has n roots.

Proof. It suffices to prove it has at least one root.

Suppose P(z) = a,2™ + - - - a1z + ag with q¢ # 0 does not have a root.

[P (2)|

Then f(z) := p; is an entire function. As z — o, 1|1 E |an|
|z|]—>o0 | 2™
lin ! =0
m —— .
el [P(2)]

So fis bounded. By Liouville’s Theorem, f is a constant. Where f = f(o0) = 0.

That causes contradiction. O]

Theorem 4.24 (Power series). If f is analytic in a region ) which contains a closed disk

B(zy, R), then f has a power series expansion at z,

(n)

20) (z—20)", Vze B(z,R) (4.9)

o f
)
n=0

Proof. Yz € B(z, R), V¢ with |( — 2| =

)n (4.10)

This series converges uniformly in ¢ with | — zy| =
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analytic in the region ) =

ForVz € B(z, R),

1 f(©)
Rt
_ o (2 —2)"
i ) Z_Rf<<>§(<_z)n+l ¢
uniformly f (C )

(46) i F™ () ——

n!

n=0

4.3 Local properties of analytic functions

4.3.1 Removable Singularities and Taylor’s Theorem

z1
Zﬁf pn €zt ¢ (27

(4.11)

We remarked that Cauchy’s integral formula holds if f is analytic except at a

finite number of point (; s.t. ChHCl (C—¢;)f(¢) = 0. We will prove f can be extended

tinuous at 1.

"<": Cauchy’s integral formula =

= %L gf(_gldg, Vze Aand z # (

f(2)

32

to an analytic function in A. In other word, (; are removable singularities.

Theorem 4.25 (Riemann’s Removable Singularities Theorem). Suppose that f is
O\{Co} where 2 is also a region. Then there exists an analytic

function in Q2 which coincides with f in Q' if and only if liHCl (z—Co)f(2) =0.

Proof. The uniqueness and "=" part is trivial since the extended function is con-

(4.12)



Lemma 4.19 = the RHS of the last equation 4.12 is analytic in z € A. Then

flz) = ff% £ e (4.13)

o] e s
is analytic in Q. 0
We apply Theorem 425 to the function F(z) — L) - g () where f is analytic

in a region (2. Note that

lim(z — Q)F(z) = 0, lim F(2) = /(0 (4.14)

z—(

Theorem 4.25 = 7 analytic function f; on Q s.t.

F(z), z #
fi(z) = ’ (4.15)

f/(C),Z = CO

we may thus write f(2) = f(¢) + (z — ) fi(2).

Repeating this process for f;, we get an analytic function f, on 2 s.t.

fi(z) = f1(Q) + (2 = () fa(2) (4.16)
where
LA -HO) .
folz) = 2=¢ (4.17)
fé(C)a z = C

Continuing the recursion, we have the general form

fn1(2) = faa(Q) + (2 = ) fu(2) (4.18)
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F(2) = FO)+ (2= QAQ) + -+ (2= " ulQ) + (2= )" ful2) (4.19)

Differentiating n times and setting z = ¢ = f(™(¢) = n!£,,(¢)

We just prove Taylor’s Theorem

Theorem 4.26 (Taylor’s Theorem). If f is analytic in a region €, ¢ € Q, then we have

F0(¢)

(n—1)! ="+ ful2)(z = Q)" (420)

f2) =)+ (==Of O+ +
where f, is analytic in Q. Moreover,

fi(2) = 1 fw)

i o0 -9 20

where C'is a circle in ) s.t. its interior A isalsoin Qand (,z € A\

Proof. It suffices to prove the second part.

Cauchy’s integral formula = f,(z) = ;= { , 2dw, vz € A,

271 IC w—z

For f,.(z), we substitute the expression from (4.20). The first term is

RS fw)
2mi Jo (w = ¢)Mw — 2)

dw (4.22)

The remaining terms have the following form, except for constant factors:

1
9k(C) = JC O g ks (4.23)

34



1
The lemma 4.19 applies to p(w) = ——, g,.(¢) = kgr-1(¢),k e N,¥( € A. So

w—Zz

1
gl(C) = J;; (w . C)(W - Z)dw

:giZleiCdW—Lwizdw] (4.24)

1
= [2mi — 27mi] =0
w—2z

So gr(z) =0, Vke N Vz € A. ]

4.3.2 Zeros and poles

Theorem 4.27. If f is analytic in a region Q and Ja € Q s.t. f™(a) = 0 for Vn €
N U {0}, then f = 0in Q.

Proof. Let B(a, R) be the disk s.t. B(a, R) < 2. Let C = 0B(0, R).
Taylor’s theorem = f(2) = (2 — a)" f,(2) with
1 w

_ )
27 Jo (W —a)™(w — 2)

dw, Yn e Nu {0},VYz € B(a, R) (4.25)

Let M = max|f(z)|.
zeC

<L M .

“ 21 RY(R—|z—al)

|z —al® MR
R* R—|z—ad

2T R

= fn(2)]

=|f(2)| < — 0asn — w0, Vz € B(0, R)

=f(z) =0,Vze B(0,R)
Now define

By ={zeQ|f"(z) =0,Y¥neNu{0}}

By = O\Ey = {z € Q|f"(z) # 0, for somen e Nu {0}}
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We just proved E; is open. E, is open because (™ is continuous in Q for Vn €
N u {0}. Q1is a region = either R, = J or Ry = .

The assumption of the theorem = F; # & = E; = (). ]

Let f be analytic in 2 which is not identically zero, f(a) = 0 for some a € €.
The previous theorem implies 3 first N € N s.t. f™)(a) # 0. Taylor’s theorem
implies that f(a) = (z — a)" fx(2) where fy is analytic and fx(a) # 0. We say that
a is a zero of order N of f.

fn is continuous = 3§ > 0 s.t. f(z) # 0 for Vz € B(a, §)\{0}.

So we have just proved an important result: Zeros of analytic functions are

isolated, or equivalently, we have a famous theorem:

Theorem 4.28 (Identity Theorem). If f and g are analytic in a region w, and f = g on

a set which has an accumulation point in ), then f(z) = g(z).
Corollary 4.29.
(1) If f = 0in a subregion of QY and f is analytic in Q, then f = 0 in (.

(2) If f is analytic in Q2 and vanishes on an arc in ) which doesn’t reduce to a point,

then f = 0in €.

If f is analytic in a neighborhood of a, but perhaps not at a itself, then a is
called an isolated singularity of f.

If lim f(z) = oo, then a is said to be a pole of f, and we set f(a) = . Continuity

z—a

1
implies 30 > 0 s.t. f(z) # 0 for Vz € B(0,6)\{a}. Thus, g(2) = 7 is analytic in
B(a,d)\{a}. lim(z — a)g(z) = 0 = a is a removable singularity of g, and g has an
analytic extension with g(a) = 0. g # 0 = a is a zero of g with finite order. The

order of the pole of f at a is the order N of the zero of g at a.
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We can write
f(z) = (z—a) VN fy(2), Vz € B(a,6)\{a} (4.26)

where fy is analytic and nonzero in a neighborhood of a.

Definition 4.30. A function which is analytic in a region ) except for (isolated)

poles is called a meromorphic function.

Example 4.31. If f and g are analytic in 2 and g # 0, then § is a meromorphic

function in . (See the Identity Theorem 4.28)

Remark 4.32. The sum, the product and quotient (if denominator is not always

zero) of two meromorphic functions are meromorphic.

If f has a pole of order N at q, then (z — a)" f(z) is analytic at a, and Taylor’s

theorem 4.26 implies
(z—a)Vf(z)=by +bya(z—a)+  +b(z—a) ' +9(2) (z—a)V (427)
where ¢ is analytic at a.

= f(z) =by(z—a) N +by_1(z—a) N V4 pb(z—a)  +o(2), V2 # a. (4.28)

Theorem 4.33. If f is analytic in a neighborhood of a, but perhaps not at «a itself, then

exactly one of the following 3 cases occurs:

(i) f = 0in this neighborhood.

0, a>N
(ii) Jinteger N € Z s.t. lim |z —a|” - |f(2)| =

z—a

w0, a<N
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(iii) meither lim |z —a|® - |f(2)| = 0 for any o € R nor lim |z — a|® - | f(2)| = oo for any

a€eR

Proof.

@ If ll_r}}t |z—a|”-|f(z)| = 0 for Va € R, then ll_r}}l |z—a|™-|f(z)| = 0 for V integer
m > a.

= (2 —a)™ f(2) has a removable singularity at « and vanishes at z = a

= Either f = 0in B(a,d)\{a}, which is case (i), or (z — a)™ f(«) has a zero of

0, a>m-—k
finite order k at a = lim |z — a|® - | f(2)| =

z—a

w0, a<m-—k
@ If lim |z — a|®|f(z)| = o for some « € R, then lim |z — a|™ - | f(z)| = oo for V
integer n < a.

= (2 —a)" f(2) has a pole of finite order [ at a

0, a>n+l
= lim |z —a|* - [f(2)| = O

- 0, a<n+l
Remark 4.34. In case (ii), N may be called the algebraic order of f at a. N > 0 if
aisapole, N < 0if aisazero,and N = 0if f is analytic at a and f(a) # 0. The
order is always an integer, there is no analytic function which tends to 0 or o, like
a fractional power of |z — a.
In some sense, three cases depends on whether ll_tg (z — a)" f(2) converges for

some N.

In case (iii), the point a is an essential isolated singularity.

Example 4.35. f(z) = exp(1) has an essential isolated singularity z = 0.

Theorem 4.36 (Weierstrass). An analytic function comes arbitarily close to any complex

value in every neighborhood of an essential singularity. Or equivalently, the codomain of

[ on every neighborhood of an essential singularity is dense in C.

38



Proof. Suppose the statement is false.

JAeC,d>0ande >0 s.t
1f(z) —A| >0, VzwithO < |z —a| <¢ (4.29)

= lim |z — a|®* - |f(2) — A| = oo for Yo < 0. = a is not an essential singularity of

f(z) — A.
The previous theorem =3 3 e R s.t. l1_r)1(1l |z —al’ - |f(z) — A| = 0, and we may
choose 5 > 0.
Then lg{ll lz—al’ - |A| = 0= l1_r)1; |z—al|?-|f(2)| = 0 by the triangular inequality.
So a is not an essential singularity of f, which causes contradiction!

So the statement has to be true. ]

Remark 4.37. If f is analytic in |z| > R. We treat oo as an isolated singularity.

Removable singularity, pole or essential singularity of f at « is defined according

to g(z) = f(3)atz =0.

4.3.3 The Local Mappings

Theorem 4.38 (The Argument Principle). Let f be analytic in a disk A s.t. f does
not vanish identically. Let z; be the zeros of f, each zero being counted as many times as
its order indicates. For every closed curve ~y in /\ which does not pass through a zero,

we have

1 f'(=z
;n(’y, 2j) = 57 ) f(<z)> dz (4.30)

where the sum has only a finite number of terms with nonzero value.

Proof.

Case I: f has exactly n zeros 21, - - - , 2.
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By repeated application of Taylor’ Theorem 4.26, we can write

F(2) = (2= 21)(z = 22) -+ (2 = 2)g(2), z€ A (4.31)

where g is analyticin A and ¢g(z) # 0 for Vz € A. =

f(z): 1 + 1 4t 1 +g(z>,VzeAandzsézj (4.32)
f(z) z—2z1 z—2 z—zn  g(2)
Cauchy’ Theorem 4.10 =
9'(2) 1 f f'(z) N
dz=0= — dz = > n(v,z; 4.33

Case II: f has infinitely many zeros in A. Then v is inside a concentric disk A’
smaller than A.

[ # 0 = There is only a finite number of zeros in A\".

So we can apply (4.33) to the disk A" = (4.30) holds since n(v, z;) = 0if z ¢
A N

Remark 4.39.

* The function w = f(z) maps 7y onto a closed curve I in the w-plane, and we

have

o[ 16,
FU‘Lfmd 39

Then (4.30) can be interpreted as n(I',0) = > n(y, z;).

J

* The most useful application of the theorem is to the case when  is a circle

(or more generally a simple closed curve). So that
1, zisinside~y

n(y,z) = Then (4.30) yields a formula for the total num-
0, zisoutside v
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ber of zeros enclosed by .

Let a € C. Apply the previous theorem to f(z) —

f/
Z (7,7 QWZJ f(z

J

where z;(a) are zeros of f — a (or roots of f(z) = a), and 7 is a closed curve in A

which doesn’t pass z;(a) =

En (7, 2j(a
J

If a and b are in the same region determined by I', then n(I", a) = n(I',b) =
PRCEACIEPIICHAC) (4.35)
J J

If v is a circle, then f takes the values a and b equally many times inside v,

counted as many times as their orders indicate.

We have the equation that

f/ zZ="nNn a)=mn
QFZJ f - (P’ ) (Fab>

o1 Jpw —b 2w f(2) —
card{z inside v : f(z) = b}

L[ do 1 fiz)dz (4.36)

Remark 4.40. We can find such «a,b easily. If w ¢ I', then there exists ¢ s.t.
B(w, ) < C\I' which is what we need.

Theorem 4.41. Suppose f is analytic at zy, and f(z) — wo has a zero of order N € N at
2g. Then for Ve > 0 sufficiently small, 36 > 0 s.t. for Va with |a — wy| < §, the equation

41



f(2) = a has exactly N roots in the disk |z — z| < ¢
Proof. We choose ¢ > 0 s.t.
(1) fisanalyticin |z — zo| < e
(2) 2 is the only zero of f(z) — wy in this disk.
(B) f'(2) #0forVzwith0 < |z — 2| < ¢

Let y be the circle |z — zp| <eand ' = f o~.

wp ¢ I'=130 >0 s.t. B(wy,d) nT' = &.

The consequence of the argument principle 4.38, i.e. (4.36) = f takes all values
a € B(wp, ) the same number of times N inside v, since f(z) = wp has exactly N
coiciding roots inside .

(3) = all roots f(z) = a with a € B(wy, §)\{wo} are simple O

Corollary 4.42 (open mapping theorem). A nonconstant analytic function maps open

sets onto open sets.
Proof. The previous theorem = Ve > 0, f(B(z0,¢)) 2 B(wo, 9) O

Corollary 4.43. If f is analytic at z, with f'(zy) # 0. It maps a neighborhood of z,

conformally and topologically onto a region.

Proof. This is the case N = 0. The previous theorem = There is 1-1 corresponding
between the disk |w—wy| < § and an open subset of |z —z| < . The open mapping
theorem 4.42 = f~! is continuous = f is a topological map. And f is conformal

on|z—z| <e O

Remark 4.44. Under the assumption of Corollary 4.43, f~! is continuous = f~!is
analytic = f~!is conformal map.
If f:Q — Cis1-1 and analytic, Theorem 4.41 can hold only with N = 1 =

f'(2) # 0 for Vz € C. So this condition is stronger than the conformal condition.
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4.3.4 The Maximum Principle

Theorem 4.45 (The maximum principle). If f is analytic and nonconstant in a region

), then its modules | f| has no maximum in €.

Proof. Vz, € (2, the open mapping theorem 4.42 = 3 an open disk |w — f(z)| < 6
contained in F'(Q2). In this disk, 3w s.t. |w| > |f(z0)| = |f(20)| is not the maximum

of | f]. O

Theorem 4.46 (The maximum principle). If f is defined and continuous on a closed
bounded set E and analytic in the interior of E, then the maximum of | f| on E is assumed

on the boundary of E.

Remark 4.47. The maximum principle can also be proved by the mean value the-

orem 4.18 for analytic functions.

Theorem 4.48 (Schwarz Lemma). If f is analytic in the disk |z| < 1 and satisfies
f(0) =0, |f(2)] <1,Vze B(0,1), then |f(z)| < |z| and |f'(0)| < 1. Furthermore, if
|f(2)] = |z| for some z # 0, or if | f'(0)| = 1, then f(z) = cz where c € C with |c| = 1.

M, z#0,2€ B(0,1)
Proof. We define g(z) = z :
f0), z2=0

Then g is analytic with ¢’(0) = @ using Taylor series (4.20).

1

The maximum principle implies that |g(z)| < —, Vz € B(0,7) where 0 < r < 1.
r

Setting r — 1, we get |g(z)| < 1, V|z| < L.

If |f(2)| = |2| for some z # 0, or |f'(0)| = 1, then |g| = 1 attains its maximum

at some interior points. By maximum principle, g has to be a constant. O

Remark 4.49. For a general analytic function f : B(0, R) — B(0, M), zy — wy.
z _ Z

LetT(z) = & _ R

1— 2.z

R R

43



T
Then So foT ! satisfies So foT 1(0) =0and |So foT'(2)| < 1
S0 foTH(C) < [C]-

= [So f(z)] <IT(2)| =

Schwarzlemma
—

R(z — 2p)
h R? — 202

M(f(z) — wo)
M? — o f(2)

,Vz€e B(0,R)

4.4 The General Form of Cauchy’s Theorem

4.4.1 Chains and Cycles

Let 2 < C be open. Let v; : [a;, ;] — 2 be piecewise continuously differen-
tiable curves in €2. The sum v; + 72 + - - - + v, which need not be a curve is called

a chain. The integral of a continuous f in €2 along this chain is defined by

N
f fF=>1r (4.37)
Yity2to YN

=17

Two chains are identical if they yield the same line integrals for all function f.

A chain is a cycle if it can be represented as a finite sum of closed curves.

4.4.2 Simple connectivity and homology

A region is simply connected if its complement w.r.t. C is connected.

Example 4.50. A disk, a half plane, a parallel strip are simply connected.
C\B(0,1) is not simply connected since its complement w.r.t. C consists of

B(0,1) and oo.

Theorem 4.51. A region Q2 < C is simply connected iff n(~y, z) = 0 for all cycles ~y in (2
and all points z ¢ €.
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Proof. "=": ¥ cycle v < ©, C\Q must be in one of the regions in C\y since C\( is
connected.

w0 e C\Q = C\Q is in the unbounded region of C\y. By theorem 4.13 n(~, z) =
0,Vz e C\Q.

"<": Suppose § is not simply connected, ie. , C\ is not connected. Let
C\Q = A U B with A, B disjoint closed sets.

Suppose that 0 € B. Then A is the bounded set. § is defined to be the distance

between A and B. The § > 0. Cover A with a net of squares () of side less than
J

V2
Suppose z € A lies at the center of a square cycle y:= > 0Q.
Q:QA#0
2p is only in one of these squares = n(7, z9) = 1.
J
Since sides of squares are less than \/—5, vn B # .

v n A = J after cancellations of the multiple sides.

= v € Q with n(v, z9) = 1. That’s a contradiction. O

A cycle v in an open set (2 is said to be homologous to zero w.r.t. Qif n(y, z) =
0 for Vz € C\Q.
In symbols, we write 7 ~ 0(mod 2). So y; ~ 7, means y; — 2 ~ 0(mod 2).

4.4.3 The general form of Cauchy’s theorem

Theorem 4.52 (General form of Cauchy’s theorem). If f is analytic in an open set (2,

then SV f(z)dz = 0 for ¥ cycle v which is homologous to zero in .
In combination with the theorem 4.51 in the previous section, we have

Corollary 4.53. If f is analytic in a simply connected region ), then Sw f(z)dz = 0 for
all cycles ~y in S.

In combination with the fundamental theorem 4.5 of Calculus for integrals in

C, we have
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Corollary 4.54. If f is analytic in a simply connected region S, then 3 an analytic func-
tion F'in Q s.t. F'(z) = f(z) for Vz € Q.

Corollary 4.55. If f is analytic in a simply connected region Q2 and f(z) # 0 for Vz € ),
then it is possible to define single-valued analytic branches of In f(z) and X/ f(z) in

Proof. f1(2) is analytic in 2 Corellatyt™ 5 an analytic function F' s.t. F'(z) = L) ’
5 f(2)
Vz e Q.
= % [f(2)e @] =0,¥2e Q= f(2) = C - "™ for some C e C\{0}.

Choose zj € 2 and one of the infinite values of In f(zy).

= exp[F(z) — F(2) +In f(z)] = fg) ce7F@) = f(2),VzeQ.

We may define In f(z) = F(2) — F(z0) + In f(20), ¥/f(2) = exp {% In f(z)]

]

Proof of Cauchy’s Theorem 4.52. Let ~ be a cycle in Q satisfying v ~ 0 mod 2. The

theorem 4.13 implies that
E :={zeC\y:n(y,2) =0} is open

We define g : 2 x Q@ — C by

150,
g(z,¢) =4 76 (4.38)
f,(z)a Z :C

Taylor’s theorem implies g is continuous in (z, () € 2 x Q. For V(, € €, g(z, (o) is

analytic in Q2 since liHCI (z = Co)g(z,¢) = 0.
z—(o

1

— Q

2m.Lg(z, )¢, ze
—1,J—f(z)dg, ek
2mi ), 2 —(

C\Qc E=QuE =C.So his defined on C.

Define h(z) = .y ~0=n(y,z) =0,Vz e C\Q =
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These two expressions are equal on 2 N E since n(7,z) =0,Vze Qn E.

Lemma 4.19 implies that 4 is analytic in E.

The last exercise in Homework 6 = F is analytic on €2 = h is entire.

n(y, z) = 01if |z| is sufficiently large = = € F if |z| large enough.

f is bounded on v = h(z) — 0 as |z| — o0 = his bounded and thus h = 0. By
Liouville’s Theorem 4.22,

—J ¢)d¢ =0,z € Q\~. Then

n(vy,z)f(z) JC— d¢, Vz e Q\y (4.39)

27r7,

Equation 4.39 is the generalized version of Cauchy’s integral formula.

Let 2o € Q\. Define hy(z) = (2 — zy) f(2). Then h, analytic and

J f(z)dz = f . 1(2) S 4 U o n(vy, z0) - h1(z) =0 (4.40)

4.5 The Calculus of Residues

45,1 The Residue Theorem

Suppose f is analytic in a region ) except for the isolated singularity at a.
Consider a circle C' centered at a and contained in §2. The residue of f at a is

defined by
Res,—.f(2) : QMJ f(z (4.41)

It is independent of choice of circle followed from the general Cauchy’s theorem
4.52.

Now suppose f is analytic in a region 2 except for finitely many singularities
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aj. Let v be cyclein Q' = Q\{a4,--- ,a,} which is homologous to zero w.r.t. Q.
Then

N

Z n(7v,a;)C; mod Q' (4.42)

where () is any circle centered at a; and contained in (?'.

The general Cauchy’s theorem 4.52 implies

N
f f(z)dz = Zn(%aj) Ly f(2)dz (4.43)
N
SO%J f dZ—; (’77%)Resz ajf( )

We just proved the residue theorem under the assumption that there are only

a finite number of singularities

Theorem 4.56 (The Residue Theorem). Let f be analytic except for countably many

isolated singularities a; in a region ). Then

N
2mi J fl2)dz = Z (7, a;)Res.—a, f(2) (4.44)

for any circle ~y which is homologous to zero in ) and does not pass through any of a;.

Proof. We already proved the case when number of singularities is finite. For the
general case,

it is enough to prove that n(y, a;) = 0 except for a finite number of a;.

Let £ := {z € C\~y : n(v,2) = 0}.

Then E is open by theorem 4.13 and contains all points outside of a large circle.
= E° is compact. So E° contains a finite number of the isolated points a; =

n(vy,a;) # 0 only for a finite number of a;. O

Remark 4.57.
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(1) In the applications it is often the case that each n(v, a;) € {0, 1}.

(2) When f has essential singularity, there is usually no simple method to com-

pute residues.

(3) If f has a pole of order N at a, we proved in §3.2 that
(z—a)V f(2) = by +by_1(z—a)+---+b(z—a) T +o(2)(z—a)V, 2 # a (4.45)
where ¢(z) is analytic at @ and by # 0. So we have

Res.of(2) = b = gy gt (G- 0Y)] (@49

This is because when the term b,(z — a)~! is omitted, the remainder of the

RHS of (4.46) is a derivative.

In particular, if f(z) = i(é;' h has a simple zero at a and g(a) # 0, then
[ g(2) . g(2) 9(a)
2=a = — =1 = 4.47
Reswaf () =l [ £ -0)| = It = 0y 6

Example 4.58. Compute §_ _, <.

Solution. The only poleis at z = 0 with order 3. The residue theorem 4.56 implies:

eiz » 1 d2 eiz '
Or one can use Taylor’s series (4.20)
)2
o 1+¢z++zz) 4.
J B J o dz = —mi (4.49)
|z|=1 “ |z|=1
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4.5.2 The Argument Principle

Theorem 4.59 (The Argument Principle). If f is meromorphic in a region Q with zeros

a; and poles by. Then

ami ), ?éj; A== ;”(% aj) = ;n(% by) (4.50)

for every cycle v which is homologous to zero in () and does not pass through any of zeros

and poles. The sums in (4.50) are finite, and multiple zeros and poles have to be repeated

as many times as their order indicates.

Proof. We assume that f has a finite number of zeros and poles, and denote that

number by K.

Let N; be the order of the zero or pole of f at z; € {a1,aq, - ,b1,ba,-- - }.
. N; 2 is a zero
Define N; :=

—Nj, zjisapole
K ~
Let g(2) = f(2) - H(z — z;)~"i. Then g only has removable singularities in €,
j=1

and we can view it as analytic in §2. Moreover, g(z) # 0 for Vz € Q.
K

£(2) = g(z) - [ [(z = 2)™ implies that
=1

<

/ / N \
f'z) 4@ Py N;j Ve £ 2, (4.51)

i) ") TR GEa)
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Then

L (@, L (d@ L[ N,
%Wf(z)dZ— L dz + ) L d

If f has infinite number of zeros or poles, the proof is the same as that of the

residue theorem. i.e. n(7, z) #= 0 for finite many z zeros or poles. O

Theorem 4.60 (Rouché’s Theorem). Let «y be a cycle which is homologous to zero in a
region Q0 s.t. n(vy,z) € {0,1},Vz € Q\n.
Suppose f, g are analyticin Q, |f(z) — g(2)| < |f(2)|,Vz € v. Then f and g have the

same number of zeros enclosed by .

Proof. First we have f(z) # 0,¢9(z) # 0 for z € 4.

Let¢(z) = gé;,z €. Then [¢(z) — 1| < 1, Vz € 7. For I = ¢(7)

J ¥'(2)
% ¢(2)
since 0 is in the unbounded connected component of C\I'.
L[ ¥()
2mi )., P(z)

ence of number of zeros of g and f. O

d
—J—w=27ri-n(F,0)=O
r W

The argument principle implies that 0 = dz is equal to the differ-

The argument principle can be generalized to

Theorem 4.61 (The Argument Principle). Under the hypothesis of the arqument prin-
ciple 4.59, and if h is analytic in ), then we have

% i h(z) J;c((j)) dz = ; (v, a;)h ;n v, b)h (4.52)
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Remark 4.62. In §5.3.3, we proved Theorem 4.41 that if f is analytic at z,, and
f (%) — wo has zero of order N at z,, then for € small enough, there exists § > 0 s.t.
Vw with |w — wy| < 9, f(2) = w has exactly N roots z;(w) in the disk |z — z| < e. If

we apply (4.52) with h(z) = z, we get

Z =55 sz(le)(—’z)u]dz, Vw € B(wp,0) (4.53)
j=1 T J)z—20|=¢ -

For N = 1, the inverse function f~!(w) can thus be represented by

1 f'(2)

f—l(w) = 2—m S ZM—_de, Yw e B(WO, (5) (454)

If we apply (4.52) with h(z) = 2™, we get

N
o 2" f'(2)
%) % T Ty oz Y € Blen, ) (4.55)

J

4.5.3 Evaluation of Definite integrals

® All integrals of the form Si” R(cos 6, sin §)dd, where the integrand is a rational
function of cosf and sinf. The substitution z = € transform it into the line

integral

24271 z2—271 dz
R ot
jz 1 ( 2 % >zz

It remains to determine the residues which correspond to the poles of the in-

tegrand inside {z : |z| < 1}.
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T de
Example 4.63. Compute f > 1.

—a
o a-+cosf’

r do _lfﬂ de
o a+cosf 2), a+cosf

z=el 1 d 1 1
:9_._Z:_f L
|z

a—i—% iz 4 e 2% 4 202 + 2

1 1

IR e B P

dz

Notethat|—a+\/a2—1|:m—m<1and|—a—’\/a2—1|>1.

Residue Theorem 4.56 implies that
T db 1 ‘
Jo T rcosf G rRes._uvaif(2)
1

—a++a2—1—(—a—+a*>—1)

— o -

@ An integral of the form {* R(z)dxz converges if and only if in the rational

function R, the degree of denominator > the degree of numerator+2 and has no

[~

A(—p, O) B(ﬂa O)

pole lies in RR.

Consider this semicircle . If p is large enough, v encloses all poles of R in the

upper half-plane. It is easy to see that

lim R(2)dz =0
PP Jr=peit 0<t<m
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+00
So we have R(x)dx = 2mi Z Resy iy R(2).
—® y>0
®
(a) The same method can be applied to f R(z)e"dz, where the rational func-
—0
tion has a zero of at least two at co. Then [¢”*| = e7¥ > 1 in the upper-half plane.

So
J R(z)edx = 2i Z Res, i, R(2)e”

—® y>0
(b) We now consider the case that R has only a simple zero at oo and no pole

on R.

(0,Y)

(-%1,0) (LUQ,O)

There exists M > 0 and C' > 0 s.t. this rectangle all poles of R in the upper
half-plane if x; > M,z > M,and Y > M. |zR(2)| < C'if |z| = M.

) Y O CY Y
f R(z)e¥dz| < J —e Vdy < — | e Vdy < —
right vertical line 0 | z | L2 Jo L2
Similarly,
f R(z)e”dz| < —
left vertical line T
< w2 Ce™Y [ CeY(z +a
_ 1 2
J R(z)edz| < f —e Vdr < —— dz = ( )
upper horizontal line —x1 ’Z | Y —x1 Y

Fix z; and x, setting Y — 0. Then

J R(z)e"™dx — 2mi Z Res, iy R(2)e”| <

—ZI1 y>0
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So
x2 . .
f R(z)edx = 2mi Z Res, iy R(2)e”

-1 y>0
(c) R has only a single zero at «o and a simple pole at 0. Suppose that R(z)e”* =

% + ¢(z) where ¢ is analytic at 0.

\/

Then it is easy to use this curve to prove that

-6 _ © ‘ , B
lim [J R(z)edx + J R(x)e””dx] = 2mi [Z Res, iy R(2)e"” + —

0+
6—0 — o0 5 y=0 2

Denote this integral as P.V. [Sio . R(z)e'"dz], called Cauchy principle value of the

integral.
Example 4.64.
0 eix
P.V. (J —dx) =27 - — =Tl
—o0 x
—PV (Jm Cosxda:JriJOO Sl”dx>
e T O
o0 o0
_pV (J Cosxd$)+iJ‘ SmIdx
e T e T
iy QJOO sinmd
0 T
© .
So we obtainj Smxdm _I
9 X 2

0

@ Calculate J z®R(z)dx, where a € (0, 1), R(%) has a zero of order larger than 2
0

at o0, and at most a simple pole at 0. Then

f 2°R(x)dx xﬁzj 2R dt (4.56)

0 0
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f(z) = z*“ is analytic in C\{iy : y < 0} if we require arg f(z) € (—7ma, 3TQ).
y q

[

A(—p, O) B(p’ O)

Applying residue theorem 4.56 to 2?**! R(2?) and take limits we have

Q0
J P TR(2%)dz = 2mi ) Res,p4y 2™ T R(2%)

—© y>0

And

J 2 R(2Y)dz = J 2 R(2%)dz + J (—2)* M R(2*)d>

—o0 0 0

o0
_ (1 o e2am’)(1 _ e2am’)J Z2a+1R(z2)dZ
0

Q0
e 2 . a
SOJ;) X R(I) = m - 2m - Z Resm+iyz2 +1R(Z2).
y>0
0 l‘%
E le 4.65. C t dz.
Xample ompute J;) 1+ 22 X

o0 1 0 2 o0 2
t t
J = 2dx=2f 4=J —
o 1+z o L+t o 1+t

2

1+ 24

Take f(z) =

and apply Residue Theorem 4.56 to f, we have

LD T LD f(2)dz = 2mi ) | Resyyif (2) = 2mi[Res ez [+ Res i) f1 = =5

y>0 2
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4.6 Harmonic Functions

4.6.1 Definition and basis properties

A real-valued function u(z) = u(z,y) in a region (2 is harmonic if it is in C?
and satisfying the Laplace’s equation

Pu Pu

Ay = ——
“ @x2+8y2

~-0 (4.57)

We already know that if f(z) = u(z,y) + iv(z,y) is analytic in €, then v and v

satisfy the Cauchy-Riemann equations, and are therefore harmonic in 2.

If u is harmonic in , then f(z) = g_u - ZZ_ is analytic in €2. This is because,
Z )
for U := a—u,V = &u
ox oy’

(U Pu Pu OV

or  o0xr _ﬁ_yz 0y
{ (4.58)
(3_U Pu Pu (3_V
L Jy B oxdy B 0yox - Oz

We may write the differential

ou  ou . 6 8u ﬁu ou

ou ou

In this expression, the real part is du = —dx + = p —dy. And if v has a conjugate
Y

harmonic function v, then the imaginary part is

dv = @dx + @dy —a—udx + a—udy
ox oy Y

In general, however, there is no (single-valued) conjugate function. We thus
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define

ja) ja)
*du = — e + Lay (4.60)
oy ox

and call *du the conjugate differential of du. We may write (4.59) as
fdz = du+i*du (4.61)
Lemma 4.66. Let v be a cycle in a region 2 s.t. v ~ 0 mod Q. Then

f *du = 0 (4.62)

Proof. (4.61) impliesf f(z)dz = J du + zj *du.
Y Y v
Cauchy’s Theorem 4.52 implies {_f(z)dz = 0. And § du = 0 since du is an
exact diffenrential.

Hence, Sw *du = 0. O

Theorem 4.67. If ) is simply connected and w is harmonic in Q, then u has a (single-

valued) conjugate function v which uniquely determined up to additive constant.

Proof. The last lemma 4.66 and theorem 4.4 imply that there is a (single-valued)

functionv s.t. *du =dv i.e.

ov ou ov  Jdu

ox ox’dy ox
So v is a conjugate function of u. (Notice that we use the property of simply
connection that every cycle in 2 is homologous to zero)
If v; and vy are two such harmonic functions, then f; = u + vy, fo = u + vy
are both analytic in €2. So fi — f2 = i(v; — v2) is analytic in Q2. The open mapping

theorem 4.42 implies f; — f> is a constant. ]
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Remark 4.68. We see that the open mapping theorem 4.42 has such power that it

gives a way to prove an analytic function with some closed property is constant.

Remark 4.69. The condition on simply connectness can not be removed. For in-
stance, u(z) = In |z| is harmonic in C\{0}, but it cannot be written as the real part

of an analytic function since In |z| = Reln 2

4.6.2 The Mean-value Property

Theorem 4.70 (Mean-value Property). Let u be harmonic in a region Q. If B(z, R) <
Q, then
2m
u(z) = J u(zo + Re)dd (4.63)

Proof. The previous theorem 4.67 implies that u has a conjugate function v on

B(z, R). Consider the analytic function f = u + iv. The Cauchy integral formula

4.39 shows
1 f(z) L i0
= — dz = — “)de 4.64
fo =g ] Fae= g | st ) (4.64
This theorem follows by taking the real part of the equation. O

Theorem 4.71. If u is harmonic in 2, and {z € C: 0 < Ry < |z — 29| < Ry} < Q, then

1 21

u(zo + re®)d = alnr + € [Ry, Ry (4.65)

2 Jy
where o and (3 are constants
Proof. In polar coordinate (r, §),

2 2 N 2
A d —|—l-i—|—i~a zrlﬁ(r-ai)—i-rza
r

o v or

59



Let U(r) = {2

o u(zo + re?)df. z — u(z + z) is harmonic. Then

1 2m ]
AU(r) = %Jo Au(zy +re?)dd = 0 (4.66)

ou

"o

Therefore, i (
or

> = 0. Therefore, U(r) = alny + 5. O
Theorem 4.72 (Maximal Principle of Harmonic Function). A nonconstant harmonic

function has neither a maximum nor a minimum in its region of definition.

Proof. Suppose v attains a maximum at zp € 2. 3R > 0 s.t. B(zg, R) < €. Suppose
da € B(z9, R) s.t. u(a) < u(z) = M.

The mean-value property implies

1 27 ]
M = u(z) = %L u(zo +re)dd < M

by continuity. This causes a contradiction.

So u is a constant in B(zp, R).

Then for every z; in the region, since we can find a series of disk such that the
center of the disk is in the previous disk and zj is the center of the first disk, z; is
in the last disk.

Then by the property above, u(zy) = u(21). So u is a constant, which causes a

contradiction! n

Theorem 4.73. u is harmonic in the interior of E and continuous on E, which is

bounded, then the maximum and minimum of u are taken on OF.
Proof. 1t is followed from Theorem 4.72 O]

It follows that the maximal norm of harmonic function u is taken on ¢ £/, which

implies a corollary
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Corollary 4.74. If u; and uy are continuous on a closed bounded set E which are har-

monic in the interior of £ and w, = uy on the boundary of E, then u; = uy on E.

Proof. Apply the maximum and minimum principle to u; — us O

4.6.3 Poisson’s Formula

Theorem 4.75 (Poisson’s formula). Suppose that w is harmonic on B(0, R) and con-

tinuous on B(0, R). Then
1 2 2
u(a) = —f Mu(z)d& (4.67)
\

forVa € B(0, R).

Proof. The idea is to use Mobius transformation and apply mean-value property.

_ = R(z —a) R(RC + a)

Let( = S71(z2) = R ) = =— 7
et =5""(2) 1 2, So z = 5(() Rtac
transformation mapping the unit circle into B(0, R) in which 0 — a.

is a Mobius

||l

o] ST |
=

Suppose u(S(¢)) is harmonic on |(| < 1(See Remark 4.77). The mean-value
property implies
w(S(0)) = u(a) = o— | w(@)—= (4.68)

where

Z-ﬁ@“’l oy ]d@ (4.69)
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Combined with (4.68) and (4.69), we obtain (4.67) in a stronger assumption.

]
Remark 4.76. Note that
R? — |a|? 2 a
= —|— — —
lz—al? z—a zZ-a
1 z a z a
"2 lz—a+2—a+ Z—c‘z—l_z—a]
o (4.70)
B 1 Zz4+a Z4+a
2 (z —a Z-— d)
_ Re (z + a)
z—a
So the Poisson’s formula can also be written as
1 zZ+a
= — dé B 4.71
u(a) 2 ) Re (Z — a) u(z)df, Ya € B(0, R) 4.71)
or
1 z+a u(z)
u(a) = Re | =— - ——2dz|, Ya € B(0, R) (4.72)
21 Jy—pz —a  z

By Lemma 4.19, u is the real part of the analytic function

1 C+2z u(Q) .
f(Z —% Kl:RC—z.TdC—i_ZC’

where C € R. (4.72) is called the Schwarz Formula.

Remark 4.77. For the general assumption in the theorem 4.75, note that if r €
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(0,1), then u(rz) is harmonic in B(0, R). The above proof implies
2 |2
u(ra) = if Mu(rz)d@ (4.73)
\

Since u is continuous on a compact set B(0, R), it is uniformly continuous. Then
u(rz) = u(z) uniformly for |z| = Rasr — 1.
Then take » — 0 in (4.73) and we obtain Poisson’s formula holds under the

assumption of the theorem.

4.6.4 Schwarz’s Theorem

We can easily define harmonic function « in the interior if u is piecewise con-
tinuous on the boundary by (4.72). However, it is not always continuous at the
boundary. The next theorem gives a condition that such an extended function u

exists if v is continuous on the boundary.

Theorem 4.78 (Schwarz’s theorem). Given a piecewise continuous function w on

[0,27], the Poisson integral

Pu(z) = — J " Re (61:0 * Z) w(6)d6 (4.74)

is harmonic for |z| < 1. Moreover, lim P,(z) = u(6y) if u is continuous at 6.
z—e’
|z|<1

Proof. Lemma 4.19 implies P, is harmonic in |z| < 1.
Note that P is a linear functional which maps piecewise continuous function

won [0, 27| to harmonic function P, on the unit disk. Explicitly,

Pu1+u2 :PUI +Pu2
(4.75)

Py, = AP,
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Applying Poisson’s formula 4.75 tou = 1, we get P, = 1, and thus P, = ¢,Vc e
R.

If u > 0on [0,27], then P, > 0. (4.75) follows that if —oo <m < u(f) < M < w0
for V0 € [0, 27|, then m < P, < M.

By replacing u with v — u(6,), WLOG, we may assume u(6y) = 0.

If u is continuous at 6, then Ve > 0, one can choose Cy, = 0B(0,1) s.t. ¢ e

int(Cy) and |u(6)| < £ for Ve € Cy. Let Cy = 0B(0,1)\C». Define

u(f), e?eCy u(f), e?eC,
ui(0) = uz(0) = (4.76)

0, otherwise 0, otherwise

Linearity of P implies P, = P,, + P,,. |us| < g = |P,,(2)] < §,Vze B(0,1). So

lim P,(z)=0
\Zz|_)<el

P,, can be viewed as a line integral over C; = P,, is harmonic in C\C}. So P,,
is harmonic in C\C} by lemma 4.19.

i0 1— |22
Re <€ +Z) _ 1P = P,(z) = 0 for z € (5. Continuity implies

e — »~ | |z — eif|2
lim P, (z)=0.
H<
Therefore, lim P,(z) =0 = u(by) N
|z]<1

4.6.5 The Reflection Principle

Theorem 4.79 (The reflection principle). Let ) be a region which is symmetric w.r.t.
the z-axis, and Q* = Qn{z € C:Imz > 0}, 0 = Qn{z e C: Imz = 0}.
Suppose that v is continuous in Q" U o, harmonic on Q*, and zero on o. Them v has a
harmonic extension to ), which satisfies v(Z) = —v(z). In the same situation, if v is the
imaginary part of an analytic function f(z) in QF, then f(z) has an analytic extension

which satisfies f(z) = f(Z).
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Q+

.
v(z), zeQt

Proof. h(z) = 10, seQ

\U(Z), ze )

We need to prove that / is harmonic in 2. It suffices to prove h is harmonic on
. Choose § small s.t. B(z,d) < Q. Let P, be the Poisson integral w.r.t. dB(zq, §)
with the boundary values h.

Schwarz’ theorem 4.78 implies P, is harmonic in B(z,d) and continuous on
B(xo,9). It follows that,

(1) v — P, is harmonic in the upper half disk B(zg,9) n {z € C : Imz > 0}.

2)v—P,=00ndB(z,0) n{z e C:Imz > 0}.

Vo € B(x,6) n o, apply Poisson formula 4.67

1 21 52 . |.T|2

T or o |0e? — x|?

Py(z) h(6e®)dd = 0 (4.77)

by symmetry.

Apply the maximum and minimum principle 4.74 to h — P, we get h = P}, in
B(z,0) n {z € C:Imz > 0}.

The same argument works for the lower half disk.

So h = P, in B(x,d) = h is harmonic at x.
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For the second part of the theorem, it is enough to prove f(z) =

f(2), et
is analytic on o.

f(z), zeqQ

For Vz, € 0, let B(xo, §) be as before. We already proved v can be extended to
a harmonic function in B(x, d). v has a conjugate function —u, iin the same disk.
We may normalize u, s.t. up = Ref(z) in B(zo,d n {z € C,Imz > 0}). Define
9(2) 1= uo(2) — uo(2)-

Then g(x) = 0 for x € B(zp,6) no =

0
%(2) =0,Vze B(zog,0) no
dg, . Oup, .  O0v,
(@) = 252() = —250(2) =0
. . dg .0g . .
So the analytic function == — 5= 0 on B(z,d) n o.(It is analytic because of
Ox y

(4.58)) Then 2_99[; — Z% = 0in B(xg,0) = g = 0.

So ug(z) = uo(2), Vz € B(xo,9) = f(z) = uo(z) + iv(z) is analytic in B(zo,d)

and f(z) = f(z) for Yz € B(xg,9).
O

Remark 4.80. The reflection principle can be applied to any circles with symmet-
ric points by using Mobius transformation. However, the condition of f(R) < R (

i.e. v(R) = 0) transforms to f(C) < C.
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5 Series and Product Representations

5.1 Power Series Expansions

5.1.1 Weierstrass’s Theorem

Theorem 5.1 (Weierstrass’s Theorem). Suppose f, is analytic in the region 2, for each
neNandQ c Q- cQ, < - and UQ” = Q. If f,, converges to f in (,
neN

uniformly on every compact subset of ), then f is analytic in Q.

Moreover, f] converges uniformly to f' on every compact subset of €.

Proof. ¥V compact subset K < (2, K < U 2, = 3N e Nsuch that K < U Q,.
V2o € Q,3R > 0 st B(z,R) Q Choose N € N s.t. B(zO,R) c Q, for

Vn > N.

Cauchy’s integral formula 4.52 implies

fi(z) = 1 fn(©)

270 Jo(z0,m) C —

£d¢, ¥z € Bz, R) (5.1)

= f uniformly on B(z, R) =

- - /()

271 JoB(zo,r) € —

~d¢ (5.2)

Then f is analytic in B(z, R) by lemma 4.19.

f’( ) _ 1 f (C) dC Vz e B(Zo,R)
271'2 0B(z0,R) (C ) (53)
() = 1 f(©) ;dC  Vz e B(z, R)

2mi 0B(z0,R) (C—2)

Then |f/(z) — f'(2)] < 217T LB( o |fn(|?—_2<)|\dc |. Therefore, f;, uniformly con-
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verges to f'in B(zg, p) for 0 < p < R.
Since any compact subset of (2 can be covered by a finite number of such closed

disks, f,, 3 f uniformly on every compact subset of (2. O

n

Corollary 5.2. If f,, is analytic in a region ) for n € N, and Z f; = [ on every compact

j=1
0
subset of ), then f is analytic in Q and f'(z) = Z fi(2), Yz € Q uniformly on every
j=1
compact subset of €.
Theorem 5.3 (Hurwitz’s Theorem). If the functions f,, are analytic and nowhere zero

in a region §Q, and if f,, = f on every compact subset of ), then f is either identically

zero or never equal to 0 in €.

Proof. Suppose f # 0. The zeros of [ are isolated.
V20€Q,30 >0 s.t. f(z) #0,Vze B(2,0)\{z0} < Q.
1 1
Then | f| has a positive minimum on 0B(zy, ). Thus, — =3 — on 0Bz, 9).

n

Combined with f; = f' on 0B(zp,d) =

lim —— &g, L 8, (5.4)
n—w 2771 8B(z0,5) fn(z) 2mi 0B(20,0) f(Z)

By argument principle 4.38, this equation equals to 0. So f has no zeros on

0B(zy,9), so is on €. O

5.1.2 The Taylor Series

Theorem 5.4. If f is analytic in the region 2, and z, € €2, then the expression

n

© F) (4
f<z>=2f (, (2 — ) (5.5)

is valid in the largest open disk of z, contained in 2.
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Proof. Taylor’s theorem 4.26 implies

(n) 20 .
f(2) = f(20) + f(20)(2 — 20) + -~ + / n(' >(Z —20)" + far1(2)(z — 20)"", (5.6)

for Vz € B(zo, R) < B(zy, R) < 2, where

1 f(¢)
fri1(z =—,J d¢ (5.7)
#(2) 276 JoB(so,m) (€ — 2)"TH(( = 2)
Let M := max |f(2)]. Then|f,11(z)(z—20)" | < M Jz—z" =
2€0B(z0,R) " R"(R — |z — %)
0 in every disk |z — 2| < p < R, from which we derive this theorem. O
Some known Taylor series:
. 22 zZ"
=l+z+5++—+--, z€C
2! n!
22 Z4 (_1)n22n
COSZ=1—§+E—"'+W+"', 2eC
) 23 25 (71)n22n+1
81nz=z—§+a—~~+m+-~, zeC (58)
2 3 n
In(1+ z2) =z—%+%—---+(—1)”+1%+--~ , Vz] <1
uwo_ 2 2 2 n
Ve R\Zso,( 1+ 2)" =1+ pz+ o )5 ) V]z| <1

where <,u) = plp= 1) (= 1), and pick the branch withIn1 = 0.

n n!

5.1.3 Laurent Series

Lemma 5.5. Let A := {z € C: Ry < |z —a| < Ry} be an annulus. For each analytic
function f : A — C, there are analytic functions f; : {z € C : |z —a|] < Ry} — C,
fo:{zeC:lz—al > R} - C st f(z) = fi(z) + fa(2), V2 e A

Proof. ForVz e A, fi(z) = % e Cﬂ_—ozdc, r € (]z — al, Ry).
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Cauchy’s theorem 4.52 implies the integral is independent of the choice of 7.
If we fix such 7, then fi(z) is analytic for V|2 — a| < 7. n2f(2) is well-
defined and analytic on B(a, R»).

Let

1 f(©)
fQ(Z) = —% jca|_T2 C— ch, 9 € (Rl, ‘Z — a|) (59)

Then f, is well-defined and analyticin {z € C : |z — a| > R;}.
Denotey, = {z: |z—a| =11}, 2 ={z:]z—a| =r}, Ry <7y <|z—a|] <r < R;.
Cauchy’s integral formula 4.39 implies

f(z2) = n(n — 7, 2)f(2) = zimf . %dc = A(2) + fo(2),Vze A (5.10)

]

Theorem 5.6 (Laurent Theorem). Any analytic function fon A = {z € C: Ry <

|z — a| < Ra} has a power series of the form
0
f(z) = Z Cn(z—a)” (5.11)

This series, called Laurent series, converges uniformly on each compact subset of A.

Moreover,

Cn L f &df, VneZ, Yr e (Ry, Rs) (5.12)
\

- % (—al=r (C - a)n+1
Proof. The previous lemma implies f(z) = fi(z) + f2(2), Vz € A, where f; is an-
alytic in |z — a| < Ry and f, is analytic in |z — a| > R;. Then Taylor series for f;
is

fi(z) =) an(z—a)" (5.13)
n=0

which converges uniformly on each compact subset of |z — a| < R,.



1 1
Let g(2) = fao(a + ;), |z] < = (5.9) tells us lim f5(z) = 0. Then liII(l] g(z) =0=
1 zZ—00 z—

Ly,

g can be viewed as an analytic function in B(0, =
1

0
The Taylor’s series for g is g(z) = Z b, 2", which converges uniformly on each

n=1

1
compact subset of B(0, R—). Now let ¢ = a + <. Then
1

1
(—a

£2(0) = 9(2) = g(—=) = D ba(¢ —a)" (5.14)

which converges uniformly on each compact subset |z — a| > R;.
0
f(z) = Z Cn(z—a)” (5.15)

which converges uniformly on each compact subset of A. Then

1 f(z) 1 5

Py ————dz = — _\k—(m+1)

2mi |z—al|=r (Z — G>n+1dz N 271 k;oo Ck Iz_zazzr(z CL) dZ, Vze (Rl, R2)
(5.16)

Wheref (z—a)*"Ddz 2 0iff k = n. So
l2—a|=r
1 f(0)
= i) T gy G e 2, Ve (B, B) (5.17)
C—al

O

Theorem 5.7. Let f be analytic in Q\{a}, where ) is a region and a is an isolated singu-
0

larity. Its Laurent series is given by f(z) = Z cn(z—a)", Vz € B(a, R)\{a} = Q\{a}.
n=—o

Then
(a) f has a removable singularity at a iff c,, = 0 forn <0

(b) f has a pole of order N at a iff c,, = 0 forn < —N and c_n # 0.
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(c) f has an essential singularity at a iff c,, # 0 for infinitely many negative n.

Proof. (a) and (b) can be derived from the explicit expression of fi, fs.

For (c), "=" follows from (b) and (a).

"<" follows from the fact that isolated singularities belong to one of three cat-
egories: removable singularities, poles, and essential singularities, i.e. theorem

4.33. U

5.2 Partial Fractions and Factorization

5.2.1 Partial fractions

Theorem 5.8 (Mittag-Leffler Theorem). Let {(x : k € N} be a sequence in C, klim G =
—00

w0, and let P, be polynomials without constant term. Then there are functions which

are meromorphic in C with poles at just the points ¢, and the corresponding singular

1
art P,
P k(Z—Ck

written as

). Moreover, the most general meromorphic function of this kind can be

10 -3 |0 (20 ) -m)]| + ot (5.18)

A z = Gk

where py, are polynomials and g is entire.

Proof. WLOG, we assume (;, # 0 for each k. Consider the Taylor expansion for
Py(

) around z = 0:

<= Gk
1 / (0 B (V&) 0)
\II(Z) :Pk(z_ck) = \I/(O)+\II(O)Z+ 2(! )22+-~-+ Nkl ZNk +\I/Nk+1ZNk+1
(5.19)
where N, is to be specified later, and
_ v (¢)
U1 (2) = 5— L i — )% (5.20)
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|C|

where C'is the circle centered at 0 with radius ——. Let M, : max |W(2)]. Then
zE

1 M, [ 2\ : [
v < — 2 —=— =2M | — , th 2| < =
(W, +1(2)] o Gl N1 Gl T TGl Vz with |z| 1
2 4
(5.21)
. N . / \I]”(O) 2
Let py. be the partial sum of ¥ up to ™. ie. p, = V(0) + ¥ (0)z + ST
yIO '
. k
+ N z"*. Then
202\ ™" [y
|V (z) — pr(2)] < 2Mj , Vzwith |z] < == (5.22)
16l 4
Pick Ny, large enough s.t. M, - 2% < 2V, Then
—k 1 —k : ’Ck’
U (z) —pr(2)] <27" = \Pk(z c ) —pe(2)] <277 Vz with |z| < e (5.23)
— Gk

Note that

o - ma| D A -]

k |k |<R |k|> R

where the first part is a finite sum and has P ( ) as the singular part at the

1
z— Ck

pole (i, and the second part is analytic in z € B(0, R) by Weierstrass’s theorem
4.36 and (5.23)
Therefore, h(z) = Z [Pk(

k

1
z — Ck

) — pr(2) | is the desired meromorphic func-
tion.
For the second part, if f is meromorphic in C with the some poles (; and

singular parts as h, then g = f — h is analytic in C. O

Remark 5.9. We have given p;, as the partial sum of P( ) up to some Nj,

Z = Ck
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Example 5.10. Prove that

LR i L (5.24)

Proof. The singular part of — ;r
si

n(mrz)
at e Zis 1 We know i ! converges uniformly on
————atz=n — —_—
sin?(7z) (z —n)? S (z—n)? & y

each compact set in C if we omit the terms which become infinite ( i.e. p, = 0in

1
at the pole z = O is 2= The singular part of

2

the previous theorem)
2

o0
The Mittag-Leffler Theorem 5.8 implies T = Z

sin?(7z)

+ g(z) where
g is analytic in C.
It is easy to see that g has period 1 and lim g(z + iy) = 0 uniformly in x € R.

ly[—00

Then |g(z)| is bounded in {z € C : 0 < Rez < 1} = |g(2)| is bounded in C by its

periodicity.
Then Liouville’s theorem 4.22 implies g is a constant, hence of 0 since lim g(xz+
Yy—00
iy) = 0. O
Similarly, one can prove
1 1 I 1 G 2
meot(mz) = — + —=—+Z 5 zz,ze(C (5.25)
z zZ—n n z Z2c—MN
n#0 n=1
From (5.24) and (5.25), one can derive
7T Lo (D"
=1 2
Sin(ﬂZ) nﬁEEOnzi;n P _»nﬁ FAS (: (5 6)
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5.2.2 Infinite Products

0
An infinite product of complex numbers H a, converges if and only if at most

n=1
a finite number of the factors are zero, and if the partial products formed by the

non-vanishing factors tend to a finite limit which is different from zero.

n

a;
. [1o

J=1
Remark 5.11. H 4, CONVErges = a, = *—

n=1 )
a;

j=1

— 1 as n — oo (if the zero factors

are omitted)

0
Theorem 5.12. The infinite product H(l + a,) with 1 + a,, # 0 converges if and only

n=1

if Z Ln(1 + a,) converges, where Ln is the principal branch of the logarithm.
n=1
Proof. "<": Let S,, = Z Ln(1 + ag). Then P, = H(l +a) = e

k=1 k=1
Sos, »>sasn—->w=P, > P=¢*#0asn — o

"="Suppose P, - P # 0asn — .

by

There exists M,, € Z s.t. Ln( 2 ) =S, —LnP +2mi- M,,neN.

by Py . Py
Then 27(M,.1 — M,) = arg(—=2) — arg(—) — arg(1 + ap41). From lim =% = 1
P P k—oo P

n+1

Py
we can derive arg( ) — arg(F) — 0asn — .
larg(l + ans1)| < ™= M,1 — M, = 0 for n large enough. So M,, = M € Z for
all large n.

P, : .
ThenLn(?) =S, —LnP+21i-M,neN=S, - LnP—2ri-Masn —ow [

The infinite product 1_[(1 + a,,) is said to be absolutely convergent if the infi-

n=1
0
nite sum Z Ln(1 + a,) is absolutely convergent.
n=1

0 o0
Theorem 5.13. The product n(l + a,,) is absolutely convergent iff Z la,| converges.

n=1 n=1
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a0 Q0
Proof. Convergence of either Z Ln(1 + a,) or Z |a,,| implies a,, — 0 asn — o

n=1 n=1

Ln(1 + 2)

1 3
lim =0= §|an| < |Ln(l + a,)| < §|an| for all large n. O

z—0

5.2.3 Canonical Products

If g is an entire function, then f(z) = ¢9*) is entire and everywhere nonzero.
Conversely, if f is any entire function which is never zero, then g(z) = In f(2) is
well-defined. So f(z) = ¢9(*) where g is entire.

This result gives a way to construct the most general function with a finite
number of zeros. Assume f has a zero of order m at the origin, and N zeros

ai,- - ,ay away from the origin.(multiple zeros being repeated) Then

N
f(z) = 2mestz H1—— (5.27)

where g is entire.

If there are infinitely many zeros, an obvious generalization is

=29 [ (1 - = 2
f(z) =2z"e l—[l Cln (5.28)
1
Theorem 5.13 implies H (1——) converges absolutely iff Z ﬁ converges. And
n=1 n 7L
in this case, the convergence is also uniform in {z : |z| < R} for VR > 0.

Theorem 5.14 (Weierstrass factorization theorem). There exists an entire function
with arbitrary prescribed zeros (a,)nen as long as a, — oo if the number of zeros is

infinite. Moreover, every entire function with these and no other zeros can be written as

ap Ny, a,

f(z) == eg(z)l_[ 1*— ) exp [i+;(z) +"'+i(i)Nn} (5.29)
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where the product is taken over all ag # 0, N,, € N U {0}, and g is entire.

Proof. We already proved the case when the number of zeros is finite in (5.27). So

we consider a sequence of complex numbers a,, # 0 with lim a,, = 0. We need

n—00
to prove that 3 polynomials p,(z) s.t. H 1 - ep" (2)) converges to an entire

function. By theorem 5.12, this is equlvalent to the umform convergence of
0
Z [In(1 — = +pn(z)] (5.30)

where the branch of the logarithm shall be chosen s.t. r,,(2) = In(1 — i) + pn(2)
has imaginary part in (—m, 7.
For given R > 0, we only need to consider the terms with |a,| > R.

The Taylor series gives

Qn

1
Ln(l—i)z—[iJr—(i)Qer],|z|<R (5.31)
= 1/(z2Y)° 1 2\
We define p,,(z) = — + 5 <—) +o = (—) , where N,, e NuU {0} is to be
an an
specified later.

Then
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If we choose N,, = n, then r,,(z) — 0 as n — . Then Im(r,(z)) € (—x, x| for
all large n. So k, = 0 for enough large n. Moreover, > r,(z) is absolutely and
uniformly convergent for |z| < R

So H(l - i)ep”(z) is analytic in B(0, R) for VR > 0. O
4

n=1 n

Corollary 5.15. Every function which is meromorphic in C is the quotient of two entire

functions.

Proof. If F' is meromorphic in C, the theorem 5.14 implies that we can construct
an entire function g whose zeros are the poles of F. Then f(z) = F(z)g(z). So

F(z) =—= O

The proof of the Weierstrass factorization theorem 5.14 tells us

ﬁl——ex i+l<i)2+---+l(i)h (5.32)
i P a, 2 \an, h \ a, ’

converges and represents an entire function is

1 0 R h+1
n+1 nZ:l (]an\) (5-33)

o0
converges forall R > 0 Z converges.

|an|h+1

0
Suppose h is the smallest integer for which Z converges. For this h,

|, [P+
(5.32) is called the canonical product associated with the sequence {a,}, and & is
the genus of the canonical product.

If f has a Weierstrass factorization for which the infinite product is a canonical

product, and if in this representation g reduces to a polynomial, then f is said to

be of finite genus. The genus of f is then defined to be

max{degree of g, genus of the canonical product}
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Example 5.16. An entire function of genus zero is of the form

0

f(z) =[]~ ai) (5.34)

with C' € C\{0}, and Z — < 0.

1 n\
Example 5.17. The canonical representation of an entire function of genus one is

either of form

F(z) = Czme "‘Zﬁ(l - ai)exp Lli] (5.35)
n=1 n n
with €' e C\{O},Zﬁ BN
or of the form ' B
£(z) = czmewﬂu - i) (5.36)

1
with C e C\{0}, @ # 0, ) ] <%

0
Example 5.18. Prove that sin(nz) = 7z H(l - %), Vz e C\Z.

n=1
Proof. The zeros of sin(nz) are z = n, n € Z. The genus of the canonical product
associated with {n},cz, is one.

So by Weierstrass factorization theorem 5.14, we must take i = 1, and

sin(rz) = zed H(l - %)e% (5.37)

n#0

Taking logarithmic derivatives on both sides, we get

meot(mz) = = + g(z)+ ( —) (5.38)

zZ—nNn
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uniformly converges on compact sets in C\Z.

Comparing with the expression for 7 cot(7z) in (5.25), we obtain ¢'(z) = 0 and

sin(r2) = 7, we have

since lim
z—0 z

;sm
l\z
—s
—
|
§w| I

sinmz = WZH

n#0 n=1

Here we use the absolute convergence and uniform convergence of the product.

[
5.24 The Gamma Function
®
[(z) = L t*~te7tdt, Rez > 0 (5.39)
Let fu(z) = Ln t*"le~'dt. Then f,(2) is analytic in Rez > 0 and
1fu(2) = T(2)] = |f t*leTtdt| < f the==le=tqy (5.40)

which converges uniformly in {z € C : § < Rez < M} for V6§ > 0,M > 0. By

Weierstrass’ theorem 5.1, I is analytic in {z : Rez > 0}.
Proposition 5.19. Here are some properties of the Gamma function:
(a) (24 1) = 2I'(2), V2 € C\{0, -1, - - - , }. In particular,I'(n + 1) = n!, Vn e N.

(b) T extends to a meromorphic function on C with simple poles at z = 0, —1, =2, - - |

0 n 1
L %, = S ] '
(c) ze l:[l Je n, z € C, where v = 7%1—{1010];1 ? Inn is the Euler’s
constant
|2
(d) T(z) = lim nn WzeC\{0,~1,-2,---}.

n—w z(z 4+ 1)+ (2 +n)
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1, .
(e) T has no zeros, T is entire.

™

N T'(z)I(1-=2) = ,Vz2eC\Z

sin(7z)

Proof.

(a) Integration by parts = I'(z + 1) = 2I'(2), Rez > 0.

(b) WeuseI'(z + 1) = 2I'(2) to analytically continue I' to meromorphic function
on C. Then
I'(z+1)

Mi(z) = ——— (5.41)

is analyticon {z € C : Rez > —1}\{0} s.t. I';(2) = I'(2) for Rez > 0.
z = 0 is a simple pole of I'; with Res,-ol';(2) = I'(1) = 1.

By induction, if we have I',,_; as the analytic continuous of I' to Rez > 1 —n,

z2# -n+2,-n+3,---,0, then we define
Lho1(z+ 1) I'(z +n)
I'.(z2) = = 5.42
(2) z 2(z4+ 1) (z+n—1) (542)
which is meromorphic for Rez > —n.with poles z = —n+1,,—n+2--- 0
(_1)n—1

and Res,—_,1Rel,(2) = CFEIk
n .

t t
(c,d,e) We know that lim (1 — —)"t*"' = e t* !, and (1 — )" < e 'for1 <t < n.
n—00 n n

Then dominated convergence theorem implies
mn t 0
lim [ (1——)"*"'dt = f e 't*7'dt = I'(z),YRez > 0
=% Jo n 0

Claim.

no !
f (1— )= ldt = e ,Rez >0 (5.43)

0 n 2(z+1)---(2+n)
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! 1 1
Proof. Indeed, forn =1, f (1—t)t=tdt = - — :
0 z  z+1

Suppose (5.43) holds for n — 1. Then

" t s=t !
J (1—)y+tdt = nzf (1—5)"s""ds
0 n 0
nZ

" [(1 _ sl nfol(l - s)"_lszdz]

z

z+1 1
n J (1—s)"ts*ds
= Jo

nz-i—l (n + 1)'
— b induction hvoothesi
z 2241 (z4+n—-1) y induction hypothesis
_ nln®
T2zt 1--(z+n)
(5.44)
Therefore, I'(z) = lim nin® Res = 0
’ _nﬂooz(z—i—l)...(z_{_n)’ .
For Rez > 0,
1 ..
BRI T G ) RN G )
F(Z) n— o0 nlnz
=z lim e (1L )1 5) (1)
n—00 n
. "1 L.
- = Jim exp [ (Z ; —hm)] [To+ e
k=1 k=1
n P B
—er [0 e 5.45
Bf P (5.45)

Weierstrass factorization theorems implies that (5.45) represents an entire

function with zeros at 0, —1, -2, - - -

Then the extension of I'(z) and

(d) and (e).

should have those above properties (c),

1
I'(z)
(f) For Vz € C\Z, we have
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0 0
=——-ze” 1_[(1 + %)6_% (—z)e? H(l - %)e%
. k=t (5.46)
z
= Zn( - @)
k=1
(5.18) SIN T2
T

One may use (d) to prove

1 1
VaT(22) = 22 M@z + ), 2 # 0,1, -2, 2 # — k

_Z 47
-, (547)

which is known as Legendre’s duplication formula.

5.3 Entire Functions

5.3.1 Jensen’s formula

Theorem 5.20 (Jensen’s formula). Suppose f is analytic in |z| < p, and all of its zeros

in|z| < pareay,- -, a, (multiple zeros being repeated) Assume z = 0 is not a zero.
Then
N P L 0
1 =—> In|l— — | 1 “)|d6 4
l£(0) ;nQ%Q+%L (e (5.48)

Remark 5.21. (1) Jensen’s formula relates the modulus | f(z)| on a circle to the

modulus of the zero in the interior enclosed by the circle.
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(2) If f(0) =0, then f(z) = Cz* + .. We apply (5.48) to f(z) (g)k and get

1 21 )
In|c| +klnp = Em <| ‘) + %L In | f(pe®)|d6 (5.49)
J

Proof. We first assume that f is free of zeros in |z| < p. Then In|f(z)| is harmonic
2m
in |z| < p. Mean value property 4.70 implies In |f(0)| = gy J In|f(pe’)|dg. Tt
T Jo
remains valid if f has zeros on the circle |z| = p. We divide f with one factor

z — pe' for zeros pe'™. Tt suffices to prove that
1 21 ) ]
Inp= —f In |pe® — pei®|de
2 Jo

27 27 ™
@f ln\ew—ewﬂd@:()(:)f 1n|ei9—1|d9=0<:>f Insintdt = —7wln2
0 0 0

Finally, for any f satisfying the assumption of the theorem, we know

F() =16 ] % (5.50)

is free from zeros in the disk |z| < p, and |F(2)| = |f(z)|on |z| = p =

27
[ F(O)] = 5 | nlf(pe)lds

21 Jo

1 In ! 2771 0|d6
= In|f(0) Z (’(m) +%L n|f(pe”)]

]

Remark 5.22. Apply the Poisson formula 4.75 to In |F'(z)|, we get the Poisson-

84



Jensen formula

In|f(2) Zln

1
_f Repe +jln|f(pe )|dé, Yz with |z| < p, f(z) # 0

p(z — a] 27 Jo petd

(5.51)

5.3.2 Order of an entire function

The order of the entire function f is defined by

Inln M

A := limsup Inln M(r) where M (r) := max|f(2)] (5.52)
r—00 Inr |z|=r
In other words, ) is the smallest number s.t.

M(r) < exp[r**€] (5.53)

for Ve > 0 as soon as r large enough.

Theorem 5.23 (Hadamard Theorem). The genus h and the order X of an entire function
satisfy the double inequality h < A < h + 1.

The proof is omitted now.

5.4 The Riemann Zeta Function

We proved in homework that the Riemann zeta function

= 1
=Y —.s=o+it (5.54)
ns

n=1

is analytic in the half-plane Res > 1.

Theorem 5.24. ¢ has the following properties:

85



(a) (Euler product formula) ¢ has the infinite product representation

((s) = 1_[ . *1p_3’ Res > 1

p prime

(b) ( extends to a meromorphic function on C whose only poly is a simple pole at s = 1

with residue 1.

(c) ¢ has no zeros in Res > 1, all zeros of ( in Res < Oareat s = —2k, ke N.

(~1)" ' (2m)

(d) ((2n) = 2 (2n)] By, n € N where B,, are the Bernoulli numbers, defined
. n).
by
z = B,
= —_-.,m 2
e n;om!z , |zl < 2w

B,
and ((—n) = _nJ:ll’ n e N.

(e) ( satisfies the functional equation (*(1 — s) = (*(s) where (* is the symmetrized

zeta function defined by
¢*(s) = 7 AT (Z)C() (5.55)
(B ') = — ! - - é ; %f@(t—s? L ERY0() — 1)di, s € C\{0,1}, where 0 is

one of the Jacobi theta series, defined as

o) = > e (5.56)

'l — —z)°
(g) C(s) = <2 : ) f ( Z)l 4z where C'is the contour shown in the picture, with
™ c €% — z

e < 2m, (—z)° = exp[sln(—z)], In(—=2) is chosen s.t. —m < ImlIn(—2) < 7.
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v
\_/

Proof.
H ! ! Res > 1 converges absolutely since
= , Res
p prime 1- p H (1 - p78>
p primes
1
Z | = Z p 1 converges for Res > 1. Hence, F(s) = H = is
p prime p prime p prime

analytic and nonzero in Res > 1. It remains to prove that ((s) = F(s) for Res > 1.

= T 17

p<N,p prime

p<N,p prime k=0

= Z %,Res>1

k1 k k
n=p; ' py*-pm”
p; <N,p; prime

By the fundamental theorem of arithmetic,

1
() = Cn(9)] < ), = — 0as N —
n=N |7’L |
which proves (a), and part of (c): ¢ has no zeros in Res > 1.
o0

Define 0(t) = Z e~™. We next prove that 6(t) = 9(%), vt > 0.

S

n=—oo
f(z) = exp(—m + x*) whose Fourier transform is

f(k:) = Joo f(x) exp[—2mikx]dx = \/i% exp[—%]
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The Poisson summation formula implies

- SR mk?. 1 1
0(t) = et = — —0(= 5.57
(= 2 ™= 2 pewl-—l=00) (5.57)
a0 0 —7t
—mnt __ €
Note that (¢ ; 7;16 = 21 — vVt > 0.
ie. 0(t) =1+ O(e ™) ast — oo.
1 1
5.57) implies 0(t) = —[1 + O(e ") ast — 0 = 0(t) = O(—=) as t — 07.
(5.57) implies 6(¢) \/%[ (e7™")] as = 0(1) (\/i)as
s « s
F(i) = f e 't271dt, Res > 1 (5.58)
0
Then replace ¢t with 7n?t. We obtain that
w*ér(g)nﬂ = J e ™57 1d¢, Res > 1 (5.59)
0
Summing over n =
o0 o0 )
SOEDY f e ™R iy
n=1v0
Fubini f Ee_ﬁnzt tg_ldt (560)
0 n=0
- f e(t)—_lt%—ldt, Res > 1
U 2
1 1
o(t) — 1 w06 -1 1 1 11
Define g(t) = (®) . Then g(t) = Vi <t2) = %g(z) + i 2 Therefore,
1 S © S
C*(s) = J g(t)téldtJrJ g(t)t1dt
0 1
1ol 11 O
= | [=g(=) + —= — = t‘ldt+f g(t)t2—tdt (5.61)
| 5o+ 55 3] gt
_ ! 1 + 1foo[9(t) 1]-[t72 +t31]dt, Res > 1
s 1-s 2, ) e
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which is analytic if we apply Weierstrass theorem to the final integral. So ( can be
extended to a meromorphic function on C, whose poles are 0, 1.

(5.55) implies (*(s) = ¢*(1 — s).

This combined with Legendre’s duplication formula and ———~+ =

sin(73)

, we obtain that
T

qg:2%*%md§ﬁu—sxu—ﬁyserwau (5.62)

¢* has simple poles at s = 0 and s = 1, with residues —1 and 1 respectively.
s 1
w2(*(s) 2

C(s) = —~— = ( has a simple pole at s = 1 with residue —~ =1. s = 0is
L'(5) I'(3)
. L 1 1-= 1
a removable singularity since I'(s) = B ass — 0. And ((0) = —= = —3

(5.62) implies zeros of ¢ for Res < 0 are precisely s = —2k, k € N.
We have proved (b),(c),(e),(f).
We next prove (g).

o] tsfl 0 0o]
. s—1 —nt
quw—t Ze&

0 0 n=1
o 00
Fubini 1 _
Z 5 16 ntdt
n=0+v0
e
u=n -1 —
= Z —SJ e du
n= Jo

) d
For f ( 2)1 . —Z, Res > 1, as ¢ | 0, the contribution from the circle of radius &
c €% — z

— 0. Then

pwﬁg_owmmpm]@+wwwmwmﬂa
J= 51, J

et —1 ot 0 et —1 t
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, , w0 sl
_ (ezsn’ _ e—zsﬂ)f ds

o et—1

= 2isin(sm)I'(s)((s), Res > 1

1 (—2)* dz
= ¢ls) = 2isin(sm)[(s) Lv ee—1 2 (5.63)
= F(Z_S)J (=2) -%, Res > 1
2mi cer—1 =z
For (d), for Vn € N,
C(—n) O L(1+n) J (=)™,
2mi c et—1
~nl (=)™ & B,
=g ), X
B
— pl(—1)r—=ntt (5.64)
ni(=1) (n+1)!
_ (_1)an+1
n+1
_ _Bn+1
n+1
since Boyy1 = 0 for k € N.
(5.62) = ((2n) = 2*"7*" L sin(7n)I(1 — 2n)¢(1 — 2n), n € Nbb
B (27)%n(=1)" —By,
T 2@2n-1)l (5.65)
_ (=n@m)
= omny PwnelN
[
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6 Riemann Mapping Theorem

6.1 Normal families

6.1.1 The Arzela-Ascoli Theorem

Let .7 be a family of functions f, defined in a fixed region 2 = C, with values
in a metric space S. The distance function in S is denoted by d.
The functions in a family .# are said to be equicontinuous on a set £ < (2 if

forVe > 0,30 >0 s.t. d(f(z), f(20)) <é&,Vz,20€ Ewith |z — 2| < dand Vf € .Z.

Remark 6.1. Each f in an equicontinuous family is itself uniformly continuous on

E.

A family is said to be normal (or relatively compact) in (2 if every sequence
{fn} of functions f, € .# contains a subsequence which converges uniformly on

every compact subset of (2.

Remark 6.2. This definition does not require the limit functions of the convergent

subsequences to be members of .7 .

1
Let By, :=Qn B(0,k) n{zeC:d(z,00) > E},keN.
Then E, is bounded and closed, and hence compact.
V compact set £ < (2 is bounded and has positive distance from 02 = E c Ej.

So the choice of Ej, is representative.

Define 6(a,b) = %. It is easy to check that ¢ is a metric and has the
advantage of being bounded.
Define
5u(f:9) = sup 6(f(2), 9(=)). p(f,9) = D o(f 9027 6.1)
ZELk k=1

It is easy to check that p(f, ¢) is finite and is a distance between f and g on (2.
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Lemma 6.3. f,, =3 f on every compact subset of 2 if and only if p(f,., f) — 0asn — .

Proof. "<":¥e > 0,IN e N s.t. p(fn, f) <&, Yn =N.

(6.1) implies 6y (fn, f) < 2%, ¥n = N and V fixed k € N. Then f, =3 f on E;
w.r.t. -metric, and hence w.r.t. the d-metric. = f,, 3 f on every compact subset
E of Q since E c Ej, for some k € N.

"=": E} is a compact subset of (2 = f, = f on Ej, w.r.t. d-metric, and hence

w.r.t. -metric = 0x(f,,, f) — 0asn — o for V fixed k € N. Then

0 ¢] ee]
lim Y. 64 (fo, )28 2 Z im Gy (fo, £)27F = 0 (6.2)
n=1 n=1
So p(fn, f) = 0asn — . O

Theorem 6.4. A family .F is normal iff its closure F w.r.t. p is compact.

Proof. "<": F is compact < Y infinite sequence of .# has a limit point in .%. So
from the lemma 6.3 .Z is normal follows. Then .% is normal. "=": For fn € Z,
WLOG we assume f,, € .Z#\.Z forall large n. ThenVn € N, 3f, € F s.t. p(fu, f) <
%. Z isnormal = { fn} has a convergent subsequence { fnk} keN.  Le. ]an = feZ

on every compact subset of Q. From the lemma 6.3 p(f,,,f) — Oask — o =

p(fue, [) — 0as k — oo since

oo §) < P o)+ 0o 1) < ==+ pls f) 63

k
[l

Theorem 6.5. The family % is totally bounded w.r.t. p iff for ¥ compact set E < 2 and
Ve >0,3f1, fo, -, fu€F st every f e .F satisfies d(f, f;) < € on E for some j.

Proof. "=": # is totally bounded = Ve > 0, 3f;,---,f, € F st Vf e Z,
p(f, f;)e for some f;. Then (6.1) implies 6x(f, f;) < 2*¢ for each fixed k € N =

92



ke

[T Vz € Ey, Vk fixed and ¢

0(f(2), fi(2)) < 2%, ¥z € By = d(f(2), f;(2)) <
small enough.

"<"Fixe > 0, pick kg € N st 27% < g Vfe F, 3joe (1,2, .0} st
(1), £(2)) < (), F3(2) < e, V2 € Buye Then 6u(f, fy) < 5, Vb < i =
p(f,fj0)<k0-2ik0+2_ko<6 O
Theorem 6.6 (Arzela-Ascoli Theorem). A family of continuous functions with values
in a complete metric space S is normal in the region Q0 < C iff (1) F is equicontinuous

on every compact set £ < Q. (2)Vz e Q, {f(z) : f € F} liein a compact subset of S.

" n . h 6.4 — . — .
Proof. "=": .7 is normal Ot F s compact w.r.t. p = Z is totally bounded

w.rt. p = .7 is totally bounded w.r.t. d by theorem 6.5.
Let £ < Q be compact. Ve > 0, determine fi,---, f, € # as in the previous

theorem. .# is equicontinuous on £ = 36 > 0 s.t.
d(fi(2), fi(z0)) < e, Vz,20 € Ewith |z — 29| <0
Vfe . Z. Let fj, be the corresponding f; from the previous theorem. Then

d(f(2), f(20)) < d(f(2), [io(2)) + d([5o(2), J5o(20)) + d( o (20), F(20)) <3¢ (64)

So we prove (1). To prove (2), we prove {f(z) : f € .%#} is compact. Let {wy} be a

sequence in {f(z) : fin.#}. Then Vw,, 3f, € . s.t. d(f,,w) < % Z is normal =
3 convergent subsequence {f,, (2)} = {wn, } converges to the same value.

"<" Choose any sequence {(;} which is dense in 2. Let {f,} be any sequence
in ..

{fn(C1)}nen is in a compact subset of S. = 3 a convergent subsequence

{fn,1(C1) bnen-
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{fn1(C1)}nen 1s In a compact subset of S. = 3 a convergent subsequence

{fn,Q(gl)}neN ot

Continue this steps and we obtain the subsequence {f,,} that converges at

each ;.
d(E, 02
Let £ < Q be compact = d(E,0Q) > 0=1r := %, K = U B(z,r) has
zeE
closure K < Q.
Z is equicontinuous on K = Ve > 0,35 <1 s.t.
d(£(2), f(z)) < g Vz, 20 € K with |2 — 2| < 6 (6.5)

Vz e E, B(z,d) contains some (; = B((;,§) contains z.

N
Eis compact = IN e N st E c U B(¢;,0) for some (i, (s, - ,(n. By the
j=1
construction of f,,,, AV. € N s.t.

A(Fan(G)s fmam(G3)) < . Vmm > N, ¥ = 1,2, N
Vze E, 3¢, = (y(2) st |z—(,| <0 forsome jye {1,2,---,N}.
(65) = d(f(2). f(Gio)) < 5. Vf e F

Then

d(fn,n(z)a fm,m(z)) < d(fn,n(z>7 fm,m(Cjo» + d(fn,n(gjo)a fm,m(gjo)) + d(fm7m(Cjo)7 fmm"b(z))

< e, Vm,n = N,

So { fnn} is uniformly Cauchy on E = {f, ,} converges uniformly on E.

Remark 6.7. In the text, p.233, it is erroneously assumed that ¢, € E.
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6.1.2 Montel’s Theorem

Theorem 6.8 (Montel’s Theorem). A family of analytic functions % is normal w.r.t.
C iff the functions in .F are uniformly bounded on every compact set of 2, where ) is a
region in C

Proof. "=": For Vzy € Q, 3r > 0 s.t. B(zp,r) < Q. The Arzela-Ascoli theorem
implies .7 is equicontinuous on B(z,7) and |f(z)| < M for some M > 0 and
VfeZ#.SoforVe >0,30 >0 s.t. |f(z)] < M + ¢ forVz e B(z,9).

Any compact set can be covered by a finite number of such B(zy,d) = .Z is
uniformly bounded on every compact set.

"<" Arzela-Ascoli theorem shows that it suffices to prove equicontinuity. Let

4 —
ECQzaT:m>O S.t.K:ZEL%'B(QT)haSCIOsureKCQ.
Let M = supsup|f(z)|. Then M < 0. For Vz, 2y € E satisfying |z — 2| < r, let

JeF zeK
7 be the circle |¢ — 2| = 2r which is contained in K = Q. We also have |¢ — 2| = 2,

|¢ — 20| > r for V( € . Cauchy’s formula implies

1 f(©) f(C)] Z_ZOJ f(©)
z) — f(z0) = =— - d¢ = ,
1(z) = f(z0) 21 W[C—z ¢ — 2 < 2mi ), (¢ —2)(¢ — 20)

forVfe .. ForVe > 0,letd = min{z r}=1f(2)— f(z0)] < i-@M\z—z(ﬂ <e¢

’ M’ 2w 2r? ’
Vz,20 € Ewith |z — 29| <, Yf € .Z. = .F is equicontinuous on FE. O
6.1.3 Marty’s Theorem

2|21 — 2o

For S = C, we use the chordal metric d(z, z,) =

VI AP+ [

Lemma 6.9.

1 If a sequence of meromorphic functions converges in the sense of chordal metric,
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uniformly on each compact subset of ), then the limit function is either meromor-

phic or = oo in €.

2 If a sequence of analytic functions converges in the same sense, then limit function

is analytic in ) or = 0 in

Proof. (1) Suppose f, = f in each compact subset of (2. Then f is continuous in
the chordal metric. Vz, € Q, if f(29) # oo, then f is bounded in a neighborhood
of zy by continuity, and thus f,, # oo in the same NBHD of all large n. Applying
Weierstrass theorem 5.1, we get that f is analytic in a neighborhood of z.

For f(zy) = oo, d(zl, i) = d(z1,29) = 1 =3 1 on each compact subset. It

1 22 In f

1
follows that 7 is analytic in a neighborhood of z, by Weierstrass theorem 5.1.

So f is either meromorphic in this neighborhood or f = o i.e. = 0 in this

&th

neighborhood.

The latter case shows that f = « on Q since we just proved f~'(0) is open,
and it is clear that f~!(o0) is relatively closed in .

(2) For 2z € Q, if f(z) # oo, similarly f is analytic in a neighborhood of z,. If
f(z) = oo, then % # 0 for V z in a neighborhood of z, implies that % =0ina
neighborhood of zy = f = o on 2 by Hurwitz Theorem 5.3. O

Remark 6.10. It shows that Hurwitz theorem 5.3 can restrict the codomain of f if

such codomain of f, are restricted to the same region.

Theorem 6.11 (Marty’s Theorem). A family of analytic or meromorphic functions %
is normal w.r.t. C iff
2|/"(2)|

p(f)(z) = T+ )P (6.6)

are locally bounded ie. {p(f): f € F} is bounded in a neighborhood of each point
z €.
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Proof. "<" Arzela-Ascoli Theorem 6.6 implies that it suffices to prove .# is

equicontinuous on every compact set in 2.

2|dz|
Y1+ 22
The sperical distance between z;,z, € C is dg(z1, 2) = igf A(), where infi-

Define the sperical length of a path v in C is defined by A(y) = S

mum is taken over all paths connecting z; and 2.
ds and d are equivalent, ie. C1d(z1,22) < dg(z1,22) < Cad(z1, 22) for some
Z1,%9 € @,0 < (] < (y < 4.
To prove the equicontinuity in a compact set &/ < (), it is proved that .7 is
equicontinuous on disks D w.rt. D < Q. V2,20 € D, y(t) = tz; + (1 — t)2,
€ [0,1],

ds(f(21), f(=2)) < J( 12ld‘0:)‘|2
w=f(z) J 2|f'(2)]|d=]
v L+ [f(2)]?

_ j p()(z) - 1] < M j da] = Mz — 2

": Suppose .# is normal but {p(f) : f € .#} is not bounded on a compact set £,
from which 3f,, € % such that sup p(f,,)(z) > n for ¥n € N follows.
We may assume f,, =3 f onz Eejz/ery compact set pf 2. Then lemma 6.9 implies
Vzg € E, we can find a small disk in 2 s.t. either f or % is analytic in this disk.
If f is analytic, then it is bounded in the closed disk = f, has no poles in
this disk for all large n = p(f,) = p(f) on a slightly smaller disk by Weierstrass
theorem 5.1 = p(f) is continuous in this smaller disk = p(f,,) is bounded on the

smaller disk.

1
If — is analytic, the same proof applies to p(

7 ) which is equal to p(f,). O

Ja
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6.2 The Riemann Mapping Theorem

6.2.1 Statement and proof

Theorem 6.12 (Riemann Mapping Theorem). Given any simply connected region )
which is not the whole place, and a point z, € €, there exists a unique analytic function
[ in Q, normalized by the condition f(zy) = 0, f'(20) > 0 s.t. f defines a one-to-one

mapping of Q2 onto the unit disk D = {w e C : |w| < 1}.

Proof. Uniqueness: Suppose there are two such functions f; and f,. Then fio f;

D — Dis 1—1 are onto. By Schwarz lemma 4.48, fio f, ' = ¢ 1Z — fk for some « €

D,peR. frofy'(0)=0,(frofy')(0) = fi(fa1(0)(fs)7(0) = fi(z )f2( 5 >0
= fiofy'(2) =2, VzeD. = fi(2) = falz), ¥z € D.

Existence:

Lemma 6.13. If (2 is simply connected and Q) # C, 3 1-1 analytic function h : Q@ — C

s.t. h(§2) does not intersect a disk B(wy, ) for some wy € C and § > 0.

Proof of Lemma. Ja € C\Q2. Q is simply connected. Corollary 4.55 = We can define
an analytic function hon Q s.t. h*(z) = z—a. If h(z1) = +h(zy) for some 21, 25 € Q,
then z; —a = 23 — a = 21 = 25. The open mapping theorem 4.42 = h({2) contains
a disk B(h(z),0) = h(Q2) n B(—h(z),0) = & = |h(z) + h(z0)| > §, ¥z € Q. In
particular, 2|h(zo)| > ¢. O

Let .# be the family of functions with the following properties:
® gis analytic and 1-1in Q
@ [g(z)] <1lonf2

® ¢g(z0) = 0and ¢'(z9) > 0.
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We first prove .# is not empty. Let

go(z) = é |7 (20)] ' h(zo) ' h(z) — h(z)
4 |h(z0)[* W(z0) h(2)+ h(z)

where ¢ and & are defined in the previous lemma.

: . 6 |h(z
s 1-1 = go is 1-1. go(z0) = 0 and gh(z0) = 3 ”h(i (;)’l
0
g 1 h(z) - h(Zo)
Z —_— — . .
90 = 3" i) ’h(z) hz0)
R
~ 4 |h(z0)  h(z) + h(z)
5 |
S 2
4 [‘h(zoﬂ + R RGD
<1

We next prove that 3f € % with maximal derivative at z,. Cauchy’s estimate

implies Vr > 0 with B(zp,7) < Q, Vg € .Z,

|z—z0|="r

2mi (C—2) | 2w r2

19 (z0)] =

So {|¢'(z0)| : g € .#} is bounded, and has a supremum B = sup 19’ (20)].

3 a sequence {g,}neny in F st g, (20) — Basn _)g;/. lgn] < 1 on Q so
by Montel’s theorem 6.8, there exists a subsequence {¢,, }ren Of {Gn}nen St g,
converges uniformly to f on every compact subset of §2. Weierstrass theorem 5.1
implies f is analytic in 2. And f(z) = kh_)nolo Gn.(20) = 0, | f'(20)] = kh_)n;) |Gn, (20)| =
B > 0= f is not a constant since |f'(zo)| = B > 0.

Yz, € Q, define §,,(2) = gn, (2) — gn, (21), Y2 € Q. G, (2) # 0 for Yz € Q\{z1}.
Then by Hurwitz’s theorem 5.3, f(2) = f(2) — f(z1) # 0 for Vz € Q\{z} since f is

not constant. Then f(z) # f(z1) for ¥z # 2, = fis 1-1 on Q.
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We finally prove that f € 7.
If Jwp e D s.t. wy ¢ f(Q2). As before, we can define an analytic function F on

S.t.

_ J(2) —wy
1 —wof(2)

It is clear that F'is 1-1 and satisfies |F'(z)| < 1 for Vz € Q. F' can be normalized as

! - F
follows: G(z) = |F/(ZO)| ~ F(Z)_ (20) . Then G is 1-1, |G(2)| < 1, ¥z € Q, and
F'(z) 11— F(2)F(2)
G(z9) = 0. Moreover,

F?(z) (6.8)

G (z0) = [E"(z0)l _ 1f'(20)l[1 = |wol"] 1+ wol |

“ToTFGOR ol w2 0> 1zl = B (69)

which causes a contradiction.

So f(Q2) =D
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algebraic order, 38
Apollonius, 17
arc, 10

area, 12

canonical product, 78

Cauchy principle value of the integral,

55

Cauchy’s estimate, 30
Cauchy’s integral formula, 28
chain, 44

identical, 44

integral, 44
change of parameter, 10
circular net, 17
conformal, 12

conjugate differential of du, 58

conjugate harmonic function of u , 5

cross ratio, 13
curve, 10
closed curve, 10
Jordan curve, 10
simple , 10
cycle, 44

equicontinuous, 91
essential isolated singularity, 38

exponential function , 8
finite genus, 78
genus, 78

harmonic, 5, 57
homologous to zero, 45

homothetic transformation, 13

index of the point z, 26
infinite product, 75
absolutely convergent, 75
integral, 19
zZ, 20
arc length, 21
inversion, 13

isolated singularity, 36
Jacobi theta series, 86

Laplace equation, 5
Laurent series, 70
left, 16

length, 12, 21

linear fraction, 6
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locally bounded, 96 simply connected, 44
logorithmic function, 8 singular part, 7

singular point, 7
meromorphic function, 37 & P

. . sperical distance, 97
Mobius transformation, 6, 12 p

sperical length, 97
normal, 91 Steiner circles, 17
order, 85 symmetric, 14
order of a pole, 6 symmetric w.r.t C through 21, 2o, 23, 14
order of the pole, 36 symmetrized zeta function, 86
order of the rational function, 6 Taylor’s Theorem, 34
parallel translation, 13 totally bounded , 10
partial fractions, 6 trigonometric function, 8

Poisson integral , 63
winding number, 26
Poisson-Jensen formula, 85

pole, 36 zero of order N, 36

poles, 6

rectifiable, 22

reflection, 14

region, 9

relatively compact, 91
removable singularities, 32
residue, 47

reversible , 10

right, 16

rotation, 13

Schwarz Formula, 62
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